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Information theory, i.e. the mathematical analysis of information and of its processing, has become 
a tenet of modern science; yet, its use in real-world studies is usually hindered by its computational 
complexity, the lack of coherent software frameworks, and, as a consequence, low reproducibility. 
We here introduce infomeasure, an open-source Python package designed to provide robust tools for 
calculating a wide variety of information-theoretic measures, including entropies, mutual information, 
transfer entropy and divergences. It is designed for both discrete and continuous variables; 
implements state-of-the-art estimation techniques; and allows the calculation of local measure values, 
p-values and t-scores. By unifying these approaches under one consistent framework, infomeasure 
aims to mitigate common pitfalls, ensure reproducibility, and simplify the practical implementation 
of information-theoretic analyses. In this contribution, we explore the motivation and features of 
infomeasure; its validation, using known analytical solutions; and exemplify its utility in a case study 
involving the analysis of human brain time series.
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Information theory, i.e. the mathematical study of information transmission and processing1–3, has become 
a cornerstone of modern data analysis, with applications ranging from the study of molecules4,5 to outer 
space6. It has further found natural applicability in the study of complex systems7, i.e. those systems composed 
of numerous interacting components; any attempt to characterise their dynamics often involves information 
theory, as the latter is the language of computation, and this defines their nature8. Metrics can then be used to 
describe interactions and information flows between these elements, and, more generally, internal organisation 
patterns. While the prototypical example of this may be neuroscience9–11, relevant applications can be found in 
fields as diverse as finance12, ecology13, or machine14 and deep learning15.

These examples may give the impression that applying information theory measures to a given problem is a 
simple process; this is nevertheless not the case, with more widespread applications being hindered by four main 
barriers. Firstly, the measurement of a given information aspect, e.g. uncertainty or information transmission, 
relies on the use of estimators. These are functions and algorithms that yield an estimation of the probability 
distributions from which data are generated, using a limited number of observed samples. Specifically, limited 
theoretical guidelines are available to select the best estimator for a given real problem; using suboptimal ones 
may result in biases and wrong results. Still, this is made more challenging by the second barrier: while multiple 
software libraries exist, they usually focus on specific measures and/or estimators. The interested reader will find 
a list of some toolboxes, along with their key characteristics, in Tab. 1; while it is not exhaustive, and does not 
include application-specific libraries (e.g. tailored to neuroscience data), it clearly shows the heterogeneity both 
in metrics and in update frequencies. This variety makes any comparison (e.g. testing multiple estimators) more 
challenging. The consequence is that a practitioner may only be able to compare a few estimators at best, unless 
multiple toolboxes are integrated in the processing pipeline. Thirdly, the large variety of available software tools 
is an obstacle towards reproducibility, as they may include variations in specific aspects of the implementation 
that may affect the obtained results. Lastly, the practitioner will face the problem of the large computational cost 
of these measures; unless robust and highly optimised algorithms are available, the application to large-scale data 
sets is challenging at best.

We here present infomeasure, a flexible, efficient and open-source Python software library, which addresses 
these issues by providing a consistent and user-friendly framework for a variety of information-theoretic 
measures and estimators. It enables the calculation of measures like entropy, mutual information (MI), transfer 
entropy (TE), and divergence metrics. These leverage multiple estimation techniques, including kernel methods, 
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ordinal estimators, and KL/KSG algorithms, thus allowing the users to select the most appropriate approach 
for their data type and research question. In addition to standard measures, the package supports conditional 
variants, generalised MI for multiple variables, and advanced entropy formulations like Rényi and Tsallis 
entropies. Finally, owing to a modular internal design, processing steps can be customised, and its components 
can easily be integrated into existing workflows.

By unifying these methodologies, infomeasure ensures consistency, reproducibility, and ease of use. Its 
modular design and extensive documentation make it suitable for a diverse audience, including neuroscientists, 
machine learning practitioners, and physicists. Most importantly, it has been designed with users with different 
technical experience in mind; it supports both high-level abstraction and low-level manual configuration, i.e. 
from simple one-liner executions to detailed component combinations. Researchers can thus focus on their 
scientific questions, without being burdened by implementation details (unless they want to). In what follows we 
describe the main features of infomeasure and provide the reader with some basic usage examples. We further 
present validation experiments using synthetic data for which analytical solutions are known; and illustrate the 
usefulness of the package in a case study involving the analysis of brain electroencephalographic (EEG) time 
series.

The infomeasure package
infomeasure is a Python library designed for efficient and accurate computation of information-theoretic 
measures. It is compatible with Python versions 3.11 and following, ensuring broad accessibility. The package 
is developed following best coding practices, adhering to open-source principles, and includes a comprehensive 
Code of Conduct (​h​t​t​p​s​:​​/​/​g​i​t​h​​u​b​.​c​o​m​​/​c​b​u​e​t​​h​/​i​n​f​​o​m​e​a​s​u​​r​e​/​b​l​o​​b​/​m​a​i​n​​/​C​O​D​E​_​O​F​_​C​O​N​D​U​C​T​.​m​d) and 
Contributing Guidelines (​h​t​t​p​s​:​​/​/​g​i​t​h​​u​b​.​c​o​m​​/​c​b​u​e​t​​h​/​i​n​f​​o​m​e​a​s​u​​r​e​/​b​l​o​​b​/​m​a​i​n​​/​C​O​N​T​R​I​B​U​T​I​N​G​.​m​d), fostering 
a welcoming and collaborative community.

Measures, estimators, and features
At the core of the infomeasure library are a set of information-theoretical measures, which can be calculated both 
on discrete and continuous data and time series.

•	 Entropy. Amount of uncertainty associated with a random variable X, calculated according to the Shannon’s 
approach.

•	 Rényi and Tsallis Estimations. Rényi28 and Tsallis29–31 entropies are parametric generalisations of Shannon 
entropy that introduce tunable parameters α and q, respectively, which adjust the sensitivity of the entropy 
measure to different regions of the probability distribution.

•	 Joint Entropy. Amount of information needed to describe two random variables X and Y together, or equiva-
lently, a measure of the total uncertainty in their joint outcomes.

•	 Cross-Entropy. Amount of information needed to encode samples from a distribution P using a code opti-
mized for another distribution Q.

•	 Mutual Information (MI). Information shared between two random variables X and Y; alternatively, it can 
be interpreted as the average reduction in uncertainty about X that results from learning the value of Y, and 
vice versa.

•	 Conditional Mutual Information (cMI). MI between two processes X and Y, conditioned on another process 
Z. It provides the shared information between X and Y, when considering the knowledge of the conditional 
variable Z.

Name Link Language Variables/methods Last update

dit16 https://dit.readthedocs.io/en/latest/index.html Python Discrete May 2025

DiscreteEntropy.jl17 https://kellino.github.io/DiscreteEntropy.jl/dev/ Julia Discrete May 2025

IDTxl18 https://github.com/pwollstadt/IDTxl Python MI, TE, AIS, PID April 2025

infotheory19 https://mcandadai.com/infotheory/ Python/C++ Discrete/continuous, limited 
estimators. August 2020

InfoTheory.jl20 https://github.com/robertfeldt/InfoTheory.jl Julia Entropy only January 2016

JIDT21 https://jlizier.github.io/jidt/ Java Discrete/Continuous May 2025

pyentropy22 https://code.google.com/archive/p/pyentropy/ Python Entropy and MI October 2019

pyEntropy (pyentrp)23 https://github.com/nikdon/pyEntropy Python Entropy July 2025

PyInform24 https://pypi.org/project/pyinform/ Python Discrete December 
2019

Pyitlib (MIT)25 https://pypi.org/project/pyitlib/ Python Discrete May 2025

The Transfer Entropy Toolbox 
(TET)26 ​h​t​t​p​s​:​​​/​​/​c​o​d​​e​.​g​o​o​g​l​​e​.​c​​o​​m​/​a​r​c​h​​i​​v​​e​/​p​​/​t​r​a​n​s​​​f​e​r​-​e​​n​t​​r​o​p​y​-​t​o​o​l​b​o​x​/ Matlab Binary time series June 2013

TRENTOL27 https://trentool.github.io/TRENTOOL3/ Matlab Discrete/continuous, only TE, 
limited estimators

November 
2017

Table 1.  Overview of existing information theory toolboxes. This list is non-exhaustive. The last column 
reports the date of the last human commit on the main branch, as of July 2025.
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•	 Transfer Entropy (TE). The TE from the source process X to the target process Y is the amount of uncertainty 
reduced in the future values of Y by knowing the past values of X, after considering the past values of Y32. 
It thus represents the reduction in the uncertainty in the target variable due to another source variable, that 
is not already explained by the target variable’s past. Equivalently, TE can be interpreted as the amount of 
information that a source process provides about the target process’ next state that was not contained in the 
target’s past states.

•	 Conditional Transfer Entropy (cTE). The conditional TE corresponds to the amount of uncertainty reduced in 
the future values of Y by knowing the past values of X, Z, and the past values of Y itself.

•	 Kullback-Leibler Divergence (KLD). Mathematical measure of the difference, or of the relative entropy, be-
tween two probability distributions P and Q. In other words, it can be seen as the degree of surprise one 
encounters by falsely assuming the distribution P instead of the true distribution Q in a model.

•	 Jensen-Shannon Divergence (JSD). Measure of the dissimilarity between two probability distributions33; also, 
symmetric version of the KLD.

As previously introduced, these measures can only be calculated by knowing the probability distributions 
underlying the observed data. As these are usually not known, except for special cases and toy models, the 
solution requires the use of estimators, i.e. functions and algorithms that yield an estimation of the probability 
distributions from which data are generated. The infomeasure library supports a large set of them, whose main 
families are listed and described below. Additionally, most combinations of estimators and measures are natively 
supported, see Tab. 2. Finally, a short guide for the user new to these approaches is provided at ​h​t​t​p​s​:​​/​/​i​n​f​o​​m​e​a​s​
u​r​​e​.​r​e​a​d​​t​h​e​d​o​​c​s​.​i​o​/​​e​n​/​l​a​t​​e​s​t​/​g​u​​i​d​e​/​e​s​t​i​m​a​t​o​r​_​s​e​l​e​c​t​i​o​n​/.

•	 Kernel Estimation. Kernel estimation techniques employ kernel density estimation (KDE) to approximate the 
probability density functions (pdf) necessary for computing information-theoretic measures32. At its core, 
KDE estimates the density at a given point by averaging contributions from all sample points, weighted by 
their distance, using a kernel function34. The choice of kernel (e.g., Box, or Gaussian) and of the bandwidth 
parameter play a crucial role in determining the smoothness and accuracy of the estimated density and, there-
fore, also of the information-theoretic measures.

•	 Kozachenko-Leonenko (KL)/Kraskov-Stoegbauer-Grassberger (KSG)/Metric/kNN Estimation. Kozachenko-Le-
onenko (KL) estimator leverages nearest-neighbour distances within the sample data to provide a direct, 
asymptotically unbiased, and consistent estimator of differential entropy, circumventing the need for explicit 
density estimation35. The idea is to approximate the local density around a sample using the volume of the 
surrounding ball defined by its k-th nearest neighbour. However, when estimating mutual information (MI), 

Measures 
Estimators Notation

Discrete 
Estimators

Kernel 
Estimators

Metric/kNN 
Estimators

Ordinal 
Estimators

Bias-
corrected 
Estimators

Shannon 
Entropy H(X) ✓ ✓ ✓ ✓ ✓
Rényi & 
Tsallis 
entropies

H(X)
✓

Joint Entropy* H(X, Y) ✓ ✓ ✓ ✓ ✓
Cross-
Entropy*

HQ(P ) ✓ ✓ ✓ ✓ ✓†

Mutual 
Information 
(MI)*

I(X; Y)
✓ ✓ ✓ ✓ ✓

Conditional 
MI* I(X; Y|Z) ✓ ✓ ✓ ✓ ✓

Transfer 
Entropy (TE)*

TX→Y ✓ ✓ ✓ ✓ ✓
Conditional 
TE*

TX→Y |Z ✓ ✓ ✓ ✓ ✓
Kullback-
Leibler 
Divergence 
(KLD)*

KLD(P ||Q)

✓ ✓ ✓ ✓ ✓†

Jensen-
Shannon 
Divergence 
(JSD)

JSD(P ||Q)

✓ ✓ ✓ ✓†

Table 2.  Information Measures and Estimation Methods. Measures marked with an asterisk (*) can also 
be computed using Rényi and Tsallis entropy formulations, in addition to the standard Shannon entropy. 
The non-standard cross-entropy notation has been borrowed from Christopher Olah’s blog post “Visual 
Information Theory”40. We choose this nomenclature HQ(P ), as the widely used H(P, Q) is ambiguous with 
joint entropy. For the bias-corrected estimators, measures marked with a dagger (†) are only available for a 
subset of the estimators.
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decomposing this into marginal and joint entropies using KL estimators can introduces biases, due to in-
consistent local density scales across spaces of differing dimensionality. The Kraskov-Stögbauer-Grassberger 
(KSG) estimator addresses this issue by computing nearest-neighbour distances in the joint space, then pro-
jecting the associated distance scale into marginal subspaces to count neighbours there36. This procedure 
ensures coherence between joint and marginal estimates, improving both bias correction and data efficiency. 
Variants of the KSG framework have also been extended to conditional MI and transfer entropy.

•	 Ordinal/Symbolic/Permutation Estimation. Symbolic estimation transforms time series or sequential data into 
a discrete symbolic sequence using a symbolization rule; for instance, the ordinal patterns method encodes 
each point into a symbol based on the relative ordering of its local neighbourhood37. This transformation 
captures essential structural features of the data while reducing sensitivity to noise. Once the time series is 
symbolised, the probability distribution over the symbol space is estimated using relative frequencies, which 
is subsequently used to estimate the information-theoretic measures.

•	 Bias-corrected estimators. Set of estimators substituting the plug-in one for the Shannon’s entropy, designed to 
provide a lower bias for small sample sizes. These estimators have been selected based on the review included 
in Refs.38,39.

Some additional features of the library ought to be here highlighted. From the viewpoint of usability, the package 
unifies the slicing mechanism for the TE estimators, ensuring consistency across all approaches and minimising 
potential points of failure. It can be used to obtain local values for the entropy, MI, and TE; thus allowing to 
describe the evolution of the information transfer through time41. It further simplifies hypothesis testing, by 
yielding p-values, t-scores and confidence intervals for MI and TE. Finally, the TE implements an Effective TE 
(eTE) variant, reducing biases from finite sample sizes42.

From an architectural viewpoint, the library is coded using a robust inheritance-based design, which 
guarantees reusability and maintainability of the codebase. This, combined with a comprehensive test suite and 
CI/CD pipelines, further ensures reliability and reproducibility. Finally, a special effort has been devoted to 
complement the package with a comprehensive documentation, collecting and clarifying various names that 
have been used for equivalent methods (e.g., Kozachenko-Leonenko (KL)/Metric/kNN Entropy, or Ordinal/
Symbolic/Permutation Entropy).

As a final issue, no software library is truly useful unless it guarantees computational efficiency. Due to the 
heterogeneity of implementations, a direct comparison with similar libraries is not practical; still, an overview of 
the computational cost of different measures and estimators is reported in Fig. 1. It can be appreciated that, even 
in the worst scenarios, time series of 105 elements can be analysed in less than a minute in a standard computer.

One-liners and examples
As previously explained, one of the principles behind the creation of the infomeasure package is the simplification 
of complex calculations through easy-to-use utility functions. In other words, even though an experienced 

Fig. 1.  Evolution of the computational cost as a function of the time series length. Results have been 
obtained with CPython 3.13.2 and Clang 18.1.8 (Darwin 24.4.0) on an Apple M4 Pro; only one core used 
in the computations. Points and whiskers respectively indicate the average and standard deviation over ten 
independent realisations. Equivalent results for bias-corrected estimators are available at ​h​t​t​p​s​:​​/​/​i​n​f​o​​m​e​a​s​u​r​​e​.​r​e​
a​d​​t​h​e​d​o​​c​s​.​i​o​/​​e​n​/​l​a​t​​e​s​t​/​d​e​​m​o​s​/​T​i​m​e​_​P​e​r​f​o​r​m​a​n​c​e​/.
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user can delve into the classes and access individual functions, a less experienced one can still perform most 
computations by calling high-level functions. We are here going to illustrate this point with three basic examples. 
Firstly, calculating the entropy for a vector of symbols is as simple as calling the im.entropy() function:

Listing 1.  Calculating entropy using the kernel approach, specifying bandwidth and kernel type.

Moving to a bivariate case, the MI between two (or more) random variables can be computed using im.
mutual_information(). Similarly to the previous case, we have:

Listing 2.  Calculating MI from discrete data.

Finally, the computation of the TE can be performed though the im.transfer_entropy() function, 
as shown below:

Listing 3.  Calculating TE using the metric approach, with noise handling.

In synthesis, these examples demonstrate how infomeasure reduces the complexity of using information-
theoretic measures. In the simplest scenario, the three functions described above only require the definition of 
the input data, the approach to use, and eventually the associated parameters. The interested reader will find 
more specific settings, as well as the meaning of all parameters, in the documentation.

Internal structure overview
The internal architecture of the infomeasure package has been designed to simplify the computation of 
information-theoretic measures while remaining flexible and extensible. At its core, the package organizes the 
computation of measures such as entropy, MI, and TE into a set of reusable and modular estimators. These 
estimators support a variety of approaches, see Tab. 2. The package builds on this core functionality to address 
challenges like selecting the appropriate estimator for a given dataset or integrating multiple measures into a 
single workflow, as all approaches share the same interface. It ensures that even users with limited technical 
expertise can compute these measures efficiently through its high-level functional API, as demonstrated in 
Listings 1, 2, and 3. These examples illustrated how users can compute entropy, MI, and TE with just a few lines 
of code, without needing to understand the underlying implementation details.

The package’s flexible design is built around a robust inheritance-based framework. A central ‘Estimator‘ 
base class defines the interfaces for all estimators, ensuring consistency in how data are processed and 
results are generated. Additional functionality is provided through mixins, such as hypothesis testing 
(StatisticalTestingMixin) and effective value computation (EffectiveValueMixin). These 
mixins enable features like permutation tests and effective transfer entropy to be added seamlessly without 
duplicating code. To support advanced users, the package also allows direct access to specific estimator classes, 
providing fine-grained control over parameters and computations.

Another key feature of infomeasure is its dynamic import mechanism, implemented in the ‘functional.
py‘ module. By mapping user-friendly terms such as “kernel” or “ordinal” to their corresponding estimator 
classes, it minimizes memory usage and ensures that only the necessary components are loaded for a given task. 
Configuration settings are centralised in the ‘Config‘ class, which allows global parameters like the logarithmic 
base (e.g., bits, nats, hartleys) to be set and adjusted. This ensures consistency across computations while also 
allowing local overrides for specific use cases. Additionally, logging is handled centrally, making it easier for 
users to debug and monitor the package’s operations.

The package also emphasizes computational efficiency and scalability. The modular design allows new 
measures or estimation techniques to be integrated easily, ensuring that the library can evolve alongside 
advancements in the field of information theory. Comprehensive documentation and consistent naming 
conventions further enhance usability, enabling users to quickly locate and understand the functionality they 
need. The package is openly accessible via PyPI (https://pypi.org/project/infomeasure/) and conda-forge ​(​​​h​t​t​p​s​:​/​
/​a​n​a​c​o​n​d​a​.​o​r​g​/​c​o​n​d​a​-​f​o​r​g​e​/​i​n​f​o​m​e​a​s​u​r​e​​​​​)​, ensuring broad compatibility and ease of installation.
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Validation
Beyond a technical verification of all modules and functions using a unit testing approach, the library has been 
numerically validated using a set of test cases. These involved comparing the values yielded by different measures 
against the analytical solutions, for random variables following known distributions.

We start with the simplest case of a random variable X defined by a normal distribution of zero average and σ 
standard deviation; its maximum likelihood entropy is known to be equal to H(X) = 1/2 log(2πeσ2). The top 
left panel of Fig. 2 reports the evolution of such entropy as a function of σ (black line), and of the results obtained 
by different estimators. All methods yield very good approximations of the analytical values, the only exceptions 
being the ordinal and discrete estimators. In the case of the former, the error comes from the discretisation 
of values to the nearest integer, which destroys all information for small values of σ. On the other hand, the 
ordinal symbolisation process only considers the relative amplitude of values within a pattern, but not their 
absolute amplitude; in other words, the obtained entropy is independent of the scaling introduced by σ, hence 
the constant value. Finally, the box kernel estimator deviates for very small standard deviations, resulting from 
the kernel bandwidth being too small to capture the information; yet it recovers the analytical curve for larger 
values.

We next move to a bivariate case, by evaluating the MI between two Gaussian random variables X and Y, 
both with zero mean and unit variance, and with a linear correlation coefficient between them of ρ. The theory 
indicates that the MI between them is given by I(X; Y ) = −1/2 log(1 − ρ2). Again, results obtained by the 
estimators match the theoretical prediction, see top right panel of Fig. 2. In this case the exception is given 
by Tsallis’ MI, here due to the use of q = 1.05–note that, for q = 1, the Tsallis’ MI becomes identical to the 
Shannon’s one.

We finally reproduce the numerical experiments described in T. Schreiber’s seminal paper32, focusing on two 
canonical systems: the tent map lattice and the Ulam map lattice. The former case is composed of 100 coupled 
tent maps in a 1D lattice topology, the dynamics of the m-th element being given by:

	 xm = f(εxm−1 + (1 − ε)xm),� (1)

with f being the tent map function:

Fig. 2.  Validation of measures and estimators. From left to right, the two top panels report the numerical and 
analytical evolution of the entropy and the MI, for Gaussian random variables. The two bottom panels report 
the evolution of the TE as a function of the coupling strength ε for respectively tent map lattices and Ulam map 
lattices32. See main text for definitions and details.
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f(x) =

{ 2x if 0 ≤ x < 1/2
2 − 2x if 1/2 ≤ x ≤ 1. � (2)

When each state x is binarised using a threshold of 0.5, the TE between each site and the next one can be 
approximated, for small values of the coupling constant ε, by:

	
TXm−1→Xm ≈ α2ε2

ln 2 ,� (3)

with α ≈ 0.77. The bottom left panel of Fig. 2 reports both the numerical estimations of the TE according to 
infomeasure (blue points, with whiskers representing the standard deviation over 10 independent realisations), 
and the corresponding least squares fit. The latter yields a value of α = 0.760 ± 0.003, i.e. very close to the one 
reported in Ref. 32.

The second considered system is a set Ulam maps, coupled according to the same topology as in Eq. 1, with f 
now being f(x) = 2 − x2. Four measures are here calculated, i.e. the TE and the MI between pairs of adjacent 
sites in both directions: TXm−1→Xm , TXm+1→Xm , I(Xm−1; Xm), and I(Xm+1; Xm). Results, reported in 
the bottom right panel of Fig. 2, show that the TE reflects the unidirectional nature of the coupling, while the MI 
tends to capture static correlations and becomes symmetric in regimes of partial synchronisation.

The interested reader can find the code to reproduce these four results, as well as some additional 
considerations, in the documentation of the package, see ​h​t​t​p​s​:​​/​/​i​n​f​o​​m​e​a​s​u​r​​e​.​r​e​a​d​​t​h​e​d​o​​c​s​.​i​o​/​​e​n​/​0​.​5​​.​0​/​d​e​m​​o​s​/​g​a​
u​s​s​i​a​n​_​d​a​t​a​/ and ​h​t​t​p​s​:​​/​/​i​n​f​o​​m​e​a​s​u​r​​e​.​r​e​a​d​​t​h​e​d​o​​c​s​.​i​o​/​​e​n​/​0​.​5​​.​0​/​d​e​m​​o​s​/​S​c​h​r​e​i​b​e​r​_​A​r​t​i​c​l​e​/.

Use case example: analysis of EEG time series
As a final topic and example of use case, we here describe the task of analysing information transmission in human 
brain time series. This section is independent from the remainder of the text; the reader not interested in it can 
safely skip to the conclusions. The underlying idea, at the foundation of the so-called “network neuroscience” 
field43,44, is that brain activity can be represented by networks; their nodes then map different regions of the 

Fig. 3.  Analysis of EEG time series. From left to right, panels correspond to: the evolution of the normalised 
TE as a function of the lag τ ; the obtained TE for each pair of EEG electrodes, with light shades indicating 
larger TE values; the differences between pairs of estimators, for all possible pairs of EEG electrodes; and the 
differences between control subjects and patients. From top to bottom, panels correspond to the box kernel, 
the KSG, and the ordinal estimators. See main text for definitions and details.
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brain, and a pair of them are connected by links whenever a statistical dependency is observed between the 
corresponding dynamics45–47. We here reconstruct functional networks by starting from electroencephalographic 
(EEG) recordings of 14 patients suffering from schizophrenia, and of the same number of matched control 
subjects48, freely available at http://dx.doi.org/10.18150/repod.0107441. Data correspond to a resting state, i.e. 
with the subjects doing no cognitive tasks and with their eyes closed; 19 electrodes were recorded at 250 Hz, 
following the standard positions: Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, O2. 
Time series have not been preprocessed and have been used as provided48.

We start by comparing the results obtained by calculating the Transfer Entropy measure between pairs of 
time series, using three different estimators: the box kernel, the KSG, and the ordinal one. We specifically analyse 
the average information detected as a function of the lag τ , for different parameters and across 100 random 
pairs of time series. Results are reported in the left panels of Fig. 3; in order to simplify comparisons across 
different parameter values, results have been normalised according to the largest TE detected for each parameter, 
such that the maximum is always one. Several interesting ideas can already be drawn. Firstly, changing the 
parameter of each estimator has a varying effect: it strongly modifies the results in the box kernel and ordinal 
cases, but has no impact in the KSG case. Secondly, in all cases two maxima are observed, one for small τ s, and 
a second one around τ ≈ 15. While the former may be the result of the smoothness of the time series, the latter 
probably represents a more genuine information transfer. We then choose the parameters yielding the clearest 
peak: τ = 17 and s = 0.1 for the box kernel; τ = 17 and k = 4 for KSG; and τ = 15 and D = 4 for the ordinal 
estimator.

When all possible pairwise TEs are calculated, averaged over the 14 control subjects, the results are those 
represented in the panels in the second column of Fig. 3. For each pair of EEG electrodes, colours indicate the 
intensity of the TE between them, from weak (dark shades) to strong (light shades). While some differences 
can be appreciated, these are more evident in the panels of the third column, where pairs of estimators are 
compared–see titles on top of each panel, with green (respectively, red) shades indicating a higher (lower) TE for 
the first estimator. The largest differences can be found for the ordinal estimator, which presents higher TE values 
between electrodes in the parietal and occipital lobes, and lower values in frontal and temporal lobes.

Panels in the rightmost column finally report the differences that each estimator observes between control 
subjects and patients. Given the average value observed in each group and for each pair of electrodes i and j, the 
difference has been estimated as δi,j = log2 T Ecntr

i,j /T Esch
i,j . Positive values of δi,j  thus indicate that the TE is 

on average higher in control subjects (represented as green squares); conversely, negative values (red squares) 
indicate a higher value for patients. Estimators here have completely different behaviours: the box kernel detects 
differences, but no clear patterns in them; the KSG, minimal differences between the two groups; and the ordinal 
estimator, a substantially higher TE for the control subjects across all regions, especially marked in the central 
lobe. Note that this latter result is aligned with previous findings in the literature49–51.

In short, this use case illustrates some of the advantages of the infomeasure library. On the one hand, it 
simplifies the computation of information-theoretical measures, in the limit that only one line of code had to be 
changed to alternate approach and parameters to obtain all results presented in Fig. 3. On the other hand, such 
flexibility enables comparisons beyond what is usually found in the literature: as an example, we here showed 
that different estimators observe different patterns discriminating between control subjects and schizophrenic 
patients. In any case, the reader should note that this is a basic analysis that does not substitute more detailed 
studies, which would require better data pre-processing and artefact elimination, statistical analysis of the 
differences, and so forth49–51.

Discussion and conclusions
We here presented infomeasure, a comprehensive Python library for the efficient and accurate computation of 
information-theoretic measures. Compared to alternative libraries, it presents multiple advantages, including: 
the availability of numerous estimators, and the possibility of plug them in the calculation of numerous measures 
(see Tab. 2); a modular structure that adapts to the expertise of the user, allowing to get results from one line of 
code, or by delving deeper into individual modules; the possibility of obtaining local values for the measures; 
and the support of hypothesis testing, through p-values and t-scores for MI and TE. While some elements are 
not automatised and are left to the control of the user (as e.g. the selection of the best parameters), the structure 
of the library simplifies its integration into larger data analysis pipelines. Additionally, we plan to continuously 
expand the set of metrics and estimators—the interested reader can find a future development roadmap in the 
documentation.

These advantages have been illustrated in a use case involving the analysis of EEG time series. One aspect 
of information-theoretical measures that is often neglected is that they require knowledge of the probability 
distributions underlying the data; and that, when this is not available, it has to be estimated. As seen in Fig. 3, 
while different estimators yield a similar global picture, at least in terms of the time scale τ  of the propagation 
of information, they do not agree in the specific differences between control subjects and patients. By allowing 
the practitioner to compare a large set of estimators, and by doing that efficiently (both computationally, and in 
terms of the length of the required code), infomeasure allows alleviating this problem. Insofar different estimators 
leverage and describe different properties of the data, such comparisons could also be used as a novel way of 
extracting insight on altered brain dynamics.

Data availability
The dataset analysed during the current study is available in the RepOD repository, ​h​t​t​p​:​/​/​d​x​.​d​o​i​.​o​r​g​/​1​0​.​1​8​1​5​0​
/​r​e​p​o​d​.​0​1​0​7​4​4​1​​​​​​
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