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1. Introduction

1. Introduction

With every advance in technology, accelerators could produce higher and higher beam energies.
Hofstadter and collaborators observed in the 1960s, that the proton has a finite radius of approxi-
mately 10−13 cm and behaves not exactly as a point charge. This was discovered when examining
a scattering cross section. Early experiments at the Stanford Linear Accelerator Center (SLAC)
carried out by MIT physicists, researched elastic electron-proton scattering with excitation energies
up to less than 2 GeV [Ken91]. To look for higher resonances and in order to reach the inelastic
continuum, the accelerator was upgraded to 20 GeV a decade later. Without expecting it, a weak
q2 dependence was found and secondly scaling as suggested by Bjorken in 1968 [Fri91]. Nowadays
energies of scattering experiments can be over four orders of magnitude larger [Hou+19]. But
already at energies with one order of magnitude more, previous mathematical models deduced using
SLAC data, are not sufficient.
This bachelor’s thesis aims to describe e±p scattering on a parton level, including the exchange and
interference of γ, Z, and W± vector bosons. From the detailed calculation of Feynman diagrams to
an implementation of a function that process patron density functions (PDFs) into a cross section.
The theoretical prediction will be compared to measurements of the scattering data. This is done
with combined HERA data at 920 GeV (

√
2 = 318 GeV) which is claimed to be “the most precise

data due to the large integrated luminosity” [Hou+19, p. 29]. A further goal of the thesis is to show
how PDFs evolved in the past 20 years. We will analyze three CTEQ PDFs: CTEQ6 (2002), CT10
(2010) and CT18NNLO (2019) [Pum+02; Lai+10; Hou+19].
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2. Preliminaries

2. Preliminaries

To understand electron-proton scattering, it is instructive to consider the underlying interactions
with the quark content. To prepare for this, we will review electron-muon scattering first, because
it is fairly similar to the quark interaction. After this, we’ll apply it to the quark interaction.

2.1. Electron-Muon Scattering

e−µ− → e−µ− scattering proceeds via the t-channel neutral current exchange. Vector boson γ carries
the electromagnetic interaction and Z the electroweak. At tree level the two diagrams Figs. 1 and 2
are the only ones for this reaction. The Feynman rules used here are given in Appendix A.4.12

2.1.1. γ∗ exchange

pA pB

pA − pB γ |
−igµν
pA−pB

k1 k2

e− e−

µ− µ−

Figure 1: Electromagnetic
electron-muon
scattering in lowest
order.

First is the Feynman diagram displayed in Fig. 1. A virtual photon
γ∗ is the exchange particle here. Feynman rules for −iM give the
invariant amplitude

−iMγ = u(pB)(ie)γµu(pA) ·
−igµν

(pA − pB)2
· u(k2)(ie)γνu(k1), (2.1)

Mγ =
−e2

t
· u(pB)γ

µu(pA) · u(k2)γµu(k1), (2.2)

where t is a Mandelstam variable t = (pA − pB)
2. For unpolarized

cross section, we have to sum (and average) over spins

|Mγ |
2 =

1

2

∑
e−spins

1

2

∑
µ−spins

MγM
†
γ =

e4

t2
Lµν
e− Lµ−

µν , (2.3)

where

Lµν
e− =

1

2

∑
e−spins

[u(pB)γ
µu(pA)] [u(pB)γ

νu(pA)]
∗︸               ︷︷               ︸

=[u(pA)γνu(pB)]

. (2.4)

using [u(pB)γ
νu(pA)]

∗ =
[
u†(pB)γ

0γνu(pA)
] †

= u†(pA)γ
ν†γ0u(pB) = u(pA)γ

νu(pB)

(using γν†γ0 = γ0γν). Analogously

Lµ−

µν =
1

2

∑
µ−spins

[
u(k2)γµu(k1)

]
[u(k2)γνu(k1)]

∗︸              ︷︷              ︸
=[u(k1)γνu(k2)]

. (2.5)

1Ell17, Diagrams are drawn with TikZ-Feynman unless otherwise stated.
2SMO20, All calculations presented here were checked against calculations with FeynCalc.
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2. Preliminaries

When rearranging the leptonic tensors L, the completeness relation Eq. (A.11) for a fermion can be
used. To advance there is a need for trace theorems as seen in Appendix A.2.

Lµν
e− =

1

2

∑
s2

u(s2)α (pB)γ
µ
αβ

∑
s2

u(s1)β (pB)u
(s1)
γ (pA)γ

ν
γδu(s2)δ (pB)

=
1

2

∑
s2

u(s2)δ (pB)u
(s2)
α (pB)︸                       ︷︷                       ︸

(�pB+me)δα

γ
µ
αβ

∑
s2

u(s1)β (pB)u
(s1)
γ (pA)︸                       ︷︷                       ︸

(�pA+me)βγ

γνγδ

=
1

2
Tr

[
(�pB + me)δαγ

µ
αβ(�pA + me)βγγ

ν
γδ

]
=

1

2
Tr (�pBγ

µ
�pAγ

ν) +
1

2
m2
e Tr (γµγν) = 2

(
pµBpνA + pνBpµ

A
−

(
pB · pA − m2

e

)
gµν

)
(2.6)

Lµ−

µν =
1

2
(�k2 + mµ)

δαγ
αβ
µ (�k1 + mµ)

βγγ
γδ
ν =

1

2
Tr

[
(�k2 + mµ)

δαγ
αβ
µ (�k1 + mµ)

βγγ
γδ
ν

]
= 2

(
k2,µk1,ν + k2,νk1,µ −

(
k2 · k1 − m2

µ

)
gµν

)
(2.7)

Combining leads to

|M|2 =
e4

t2
Lµν
e− Lµ−

µν =
8e4

t2

(
(pB · k2)(pA · k1) + (pB · k1)(pA · k2)−m2

ek2 · k1 − m2
µpB · pA + 2m2

em2
µ︸                                        ︷︷                                        ︸

in the massless limit =0

)
.

(2.8)

This is also expressible through the Mandelstam variables:

|M|2 =
32e2

t2
[
(s − m2

e − m2
µ)

2 + (m2
e + m2

µ − u)2 + 2(m2
e + m2

µ)t
]

(2.9)

s,u,t�me,mµ
= 2e4

s2 + u2

t2
(2.10)

2.1.2. Z0 exchange

pA pB

pA − pB Z0 |
−i(gµν−pµpν/m

2
z )

pA−pB−m
2
z

k1 k2

e− e−

µ− µ−

Figure 2: Electroweak
electron-muon
scattering in lowest
order.

Secondly comes the Feynman diagram with the electroweak interac-
tion of the electrically neutral vector Z0 boson. For this diagram a
new propagator as given in Fig. 2 is needed as well as a new vertex
factor

ieγµ → −i
g

cos θW
γµ

1

2
(g

f
V − a f

Vγ
5) (2.11)

where g sin θW = e, and g
f
V, a

f
V constant vertex factors for a fermion

f . For the electron and muon they are equal

ae,µ
V = −

1

2
and g

e,µ
V = −

1

2
+ sin2 θW . (2.12)

θW is called the Weinberg or weak mixing angle.
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2. Preliminaries

Using gV = CL + CR and aV = CL − CR the vertex factor can be rewritten as

1

2

(
gV − aVγ5

)
=

1

2

(
CL + CR − (CL − CR) γ

5
)
= CL

1

2

(
1 − γ5

)
+ CR

1

2

(
1 + γ5

)
= CLPL + CRPR .

(2.13)
The operators PL and PR are called the chiral projection operators and span an orthonormal system
for the helicity of particles. More on that in Appendix A.3. The Lorentz invariant amplitude is
given using the Feynman Rules for the diagram in Fig. 2.3

−iMZ =u(pB)
−ig
cW

γµ (Ce
LPL + Ce

RPR) u(pA) · (−i)
gµν −

pµpν

m2
Z

t − m2
Z

· u(k2)
−ig
cW

γν
(
Cµ
LPL + Cµ

RPR

)
u(k1) (2.14)

MZ = −
g2

4c2W
[u(pB)γ

µ (Ce
LPL + Ce

RPR) u(pA)] ·
©«
gµν −

pµpν

m2
Z

t − m2
Z

ª®¬
·
[
u(k2)γν

(
Cµ
LPL + Cµ

RPR

)
u(k1)

]
(2.15)

where mZ is the mass of the Z boson. The mass is much bigger than the mass of the colliding
particles and so pµpν

m2
Z

does not contribute: mZ � me,mµ ⇒ 1
2 (pA − pB)σ u(pB)γ

σu(pA) = 0 ⇒

gµν −
pµpν

m2
Z

= gµν

MZ = −
g2

c2W
[u(pB)γ

µ (Ce
LPL + Ce

RPR) u(pA)]
gµν

t − m2
Z

[
u(k2)γν

(
Cµ
LPL + Cµ

RPR

)
u(k1)

]
(2.16)

M
†

Z = −
g2

c2W
[u(pA)γ

µ (Ce
LPL + Ce

RPR) u(pB)]
gµν

t − m2
Z

[
u(k1)γν

(
Cµ
LPL + Cµ

RPR

)
u(k2)

]
(2.17)

These simple forms are again possible because of the hermitian conjugate of the transition matrix:

[u(pB)γ
µ (Ce

LPL + Ce
RPR) u(pA)]

∗ =

[
u†(pB)γ

0γµ
1

2

(
geV − ae

Vγ
5
)

u(pA)

] †
= u†(pA)

(
geV − ae

Vγ
5†

) 1

2
γµ†γ0u(pB)

γµ†γ0 = γ0γµ ⇒ = u†(pA)
1

2

(
geV − ae

Vγ
5†

)
γ0γµu(pB)

= u†(pA)γ
0 1

2

(
geV + ae

Vγ
5†

)
γµu(pB){

γξ, γ5
}
= 0 ⇒ = u(pA)γ

µ 1

2

(
geV − ae

Vγ
5
)

u(pB)

= [u(pA)γ
µ (Ce

LPL + Ce
RPR) u(pB)] (2.18)

The calculation is analogous to the previous diagram:

|MZ |
2 =

g4

c4W

1(
t − m2

Z

) 2 ·
∑
spins

[u(pB)γ
µ (Ce

LPL + Ce
RPR) u(pA)] gµν

[
u(k2)γν

(
Cµ
LPL + Cµ

RPR

)
u(k1)

]
3From here on we use shorthands sW and cW for sin θW and cos θW .
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2. Preliminaries

· [u(pA)γ
α (Ce

LPL + Ce
RPR) u(pB)] gαβ

[
u(k1)γβ

(
Cµ
LPL + Cµ

RPR

)
u(k2)

]
(2.19)

First, sort the spin sums pairwise and apply the completeness relation.

|MZ |
2 =

g4

c4W

1(
t − m2

Z

) 2 (
1

2

∑
e−-spins

u(pB)γ
µ (Ce

LPL + Ce
RPR) u(pA)u(pA)γ

α (Ce
LPL + Ce

RPR) u(pB)

)
×(

1

2

∑
eµ -spins

u(k2)γν
(
Cµ
LPL + Cµ

RPR

)
u(k1)u(k1)γβ

(
Cµ
LPL + Cµ

RPR

)
u(k2)

)
gµνgαβ (2.20)

=
g4

4c4W

1(
t − m2

Z

) 2 ( ∑
e−-spins

u(pB)u(pB)γ
µ 1

2

(
geV − ae

Vγ
5
)

u(pA)u(pA)γ
α 1

2

(
geV − ae

Vγ
5
) )

×( ∑
eµ -spins

u(k2)u(k2)γν
1

2

(
g
µ
V − aµ

Vγ
5
)

u(k1)u(k1)γβ
1

2

(
g
µ
V − aµ

Vγ
5
) )

gµνgαβ (2.21)

=
g4

16c4W

1(
t − m2

Z

) 2 Tr
[
(�pB + me) γ

µ
(
geV − ae

Vγ
5
)
(�pA + me) γ

α
(
geV − ae

Vγ
5
) ]

· Tr
[ (
�k2 + mµ

)
γν

(
g
µ
V − aµ

Vγ
5
) (

�k1 + mµ

)
γβ

(
g
µ
V − aµ

Vγ
5
) ]

gµνgαβ (2.22)

To streamline, we solve again the traces in the massless limit me,mµ = 0 with the diverse trace
theorems of Appendix A.2.

Tr1 [...] =Tr
[
�pBγ

µ
(
geV − ae

Vγ
5
)
�pAγ

α
(
geV − ae

Vγ
5
) ]

=(geV )
2 Tr [�pBγ

µ
�pAγ

α] − geVae
V Tr

[
�pBγ

µ
�pAγ

αγ5
]

− ae
Vg

e
V Tr

[
�pBγ

µγ5�pAγ
α
]
+ (ae

V )
2 Tr

[
�pBγ

µγ5�pAγ
αγ5

]
=(geV )

2 Tr [�pBγ
µ
�pAγ

α] − 2geVae
V Tr

[
�pBγ

µ
�pAγ

αγ5
]
+ (ae

V )
2tr[�pBγ

µ
�pAγ

α γ5γ5︸︷︷︸
=1

]

=
(
(geV )

2 + (ae
V )

2
)

Tr [�pBγ
µ
�pAγ

α] − 2geVae
V Tr

[
�pBγ

µ
�pAγ

αγ5
]

=
(
(geV )

2 + (ae
V )

2
)
4
(
pαApµB + pµ

A
pαB − (pApB) g

µα) − 2geVae
V pB,δpA,γ(−4i)εδµγα (2.23)

Similarly

Tr2[...] =
(
(g

µ
V )

2 + (aµ
V )

2
)
4
(
k1,βk2,ν + k1,νk2,β − (k1k2) gνβ

)
− 2g

µ
Vaµ

V k2 k1 (−4i)ε
 ν β . (2.24)

With the last identity of Eq. (A.6), combining theses gives

Tr1[...]Tr2[...]gµνgαβ =16
(
(geV )

2 + (ae
V )

2
) (

(g
µ
V )

2 + (aµ
V )

2
) (

2 (pAk1) (pBk2) + 2 (pAk2) (pBk1)

− 2 (pApB) (k1k2) − 2 (k1k2) (pApB) + 4 (pApB) (k1k2)
)

+ 32i
(
(geV )

2 + (ae
V )

2
)
g
µ
Vaµ

V

(
pνApβB + pAβpνB

)
k2 k1 ε ν β︸                                   ︷︷                                   ︸

=0 because ε
 ν β=−ε

 β ν
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2. Preliminaries

+ 32igeVae
V

(
(g

µ
V )

2 + (aµ
V )

2
)

pB,δpA,γ

(
k1,µk2,α + k1,αk2,µ

)
εδµγα︸                              ︷︷                              ︸

=0

− 64geVae
Vg

µ
Vaµ

V pB,δpA,γk2 k1 εδµγαε
 µ α︸         ︷︷         ︸

−2
(
δδ

δ
γ

−δδ


δ
γ



) (2.25)

=32
(
(geV )

2 + (ae
V )

2
) (

(g
µ
V )

2 + (aµ
V )

2
)
((pAk1) (pBk2) + (pAk2) (pBk1)) (2.26)

+ 128geVae
Vg

µ
Vaµ

V pB,δpA,γk2 k1
(
δδ

δ
γ


− δδ


δ
γ



)
.

When using the 4-momentum conservation with neglected masses pA+k1 = pB+k2 ⇒ pA·k1 = pB ·k2.
For the Mandelstam variables s = (pA + k1)

2
' 2pA · k1 and u = (pA + k2)

2
' 2pA · k2 = 2pB · k1.

Then the formula reduces to

Tr1[...]Tr2[...]gµνgαβ =2
(
(geV )

2 + (ae
V )

2
) (

(g
µ
V )

2 + (aµ
V )

2
) (

s2 + u2
)
+ 8geVg

µ
Vae

Vaµ
V

(
s2 − u2

)
(2.27)

and the squared (averaged) matrix element is

|MZ |
2 =

e4

8c4W s4W

1(
t − m2

Z

) 2 [ (
(geV )

2 + (ae
V )

2
) (

(g
µ
V )

2 + (aµ
V )

2
) (

s2 + u2
)
+ 4geVg

µ
Vae

Vaµ
V

(
s2 − u2

) ]
.

(2.28)

2.1.3. Interference

For the full invariant amplitude |M|2 = 1
2

∑
spin

{��Mγ

��2 + |MZ |
2 + 2<

(
MγM

†

Z

) }
there is a inter-

ference term needed. Let’s calculate it in the following. First a recap of the amplitudes:

Mγ = u(pB)(ie)γµu(pA)
−gµν

(pA − pB)
2

u(k2)(ie)γνu(k1) (2.29)

MZ = u(pB)

(
−ig

cos θW

)
γµ [Ce

LPL + Ce
RPR] u(pA)

−gµν +
pµpν

m2
Z

t − m2
Z

u(k2)
(

−ig
cos θW

)
γν

[
Cµ
LPL + Cµ

RPR

]
u(k1)

(2.30)

M
†

Z = u(pA)

(
ig

cos θW

)
γµ [Ce

LPL + Ce
RPR] u(pB)

−gµν +
pµpν

m2
Z

t − m2
Z

u(k1)
(

ig
cos θW

)
γν

[
Cµ
LPL + Cµ

RPR

]
u(k2).

(2.31)

Now the amplitudes have to be combined, as

∑
spin

<

[ (
u(pB)(ie)γµu(pA)

−gµν

t
u(k2)(ie)γνu(k1)

)
× (2.32)

©«u(pA)

(
ig

cos θW

)
γα [Ce

LPL + Ce
RPR] u(pB)

−gαβ +
pαpβ

m2
Z

t − m2
Z

u(k1)
(

ig
cos θW

)
γβ

[
Cµ
LPL + Cµ

RPR

]
u(k2)

ª®¬
]
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2. Preliminaries

Previous steps are now repeated neglecting the contribution from the pµpν

m2
Z

term.

1

2

∑
spin

2<
(
MγM

†

Z

)
=

g2

cos2 θW
1

t
(
t − m2

Z

) <[ ( ∑
e-spin

u(pB)γ
µu(pA)u(pA)γ

α [Ce
LPL + Ce

RPR] u(pB)

)
×( ∑

µ-spin
u(k2)γνu(k1)u(k1)γβ

[
Cµ
LPL + Cµ

RPR

]
u(k2)

)
gµνgαβ

]
(2.33)

=
g2

cos2 θW
1

t
(
t − m2

Z

) <[
Tr [(�pB + me) γ

µ (�pA + me) γ
α [Ce

LPL + Ce
RPR]]×

Tr
[ (
�k2 + mµ

)
γν

(
�k1 + mµ

)
γβ

[
Cµ
LPL + Cµ

RPR

] ]
gµνgαβ

]
(2.34)

Determining the traces in the limit me,mµ → 0 gives

Tr
[
�pBγ

µ
�pAγ

α

[
Ce
L

1

2

(
1 − γ5

)
+ Ce

R

1

2

(
1 + γ5

) ] ]
(2.35)

=Tr [�pBγ
µ
�pA]

1

2
(Ce

L + Ce
R)︸       ︷︷       ︸

ge
V

+
1

2
(Ce

L − Ce
R)︸      ︷︷      ︸

ae
V

Tr
[
�pBγ

µ
�pAγ

5
]

(2.36)

=
1

2
geV4

(
pαApβB + pβ

A
pαB − (pApB) g

µα
)
−
1

2
ae
V pB,βpA,ν(−4i)εβµαν, (2.37)

Tr2 [...] =
1

2
g
µ
V4

(
k1,αk2,β + k1,βk2,α − (k1k2) gµα

)
+ 2iae

V kβ
2 kν1εβµαν . (2.38)

Together they are

Tr1 [...]Tr2 [...] =4geVg
µ
V

(
2 (pAk1) (pBk2) + 2 (pAk2) (pBk1) (2.39)

− 2 (pApB) (k1k2) − 2 (k1k2) (pApB) + 4 (pApB) (k1k2)
)

− 4ae
Vaµ

V pB,βpA,νkδ
2 kη1 ε

βµανεδµην

=8
(
geVg

µ
V
((pAk1) (pBk2) + (pAk2) (pBk1)) + ae

Vaµ
V pB,βpA,νkδ

2 kη1
(
δ
β
δ δ

α
η − δ

β
ηδ

α
δ

) )
.

(2.40)

Neglecting the masses again pA + k1 = pB + k2 turns to pAk1 = pBk2 and then with Mandelstam
variables the solution is∑

spin
<

(
MγM

†

Z

)
=

e4

2c2W s2W

1

t
(
t − m2

Z

) (
− 2geVg

µ
V
((pAk1) (pBk2) + (pAk2) (pBk1))

+ 2ae
Vaµ

V
((pAk2) (pBk1) − (pAk1) (pBk2))

)
(2.41)

=
e4

2c2W s2W

1

t
(
t − m2

Z

) (
−2geVg

µ
V

(
s2 + u2

)
− 2ae

Vaµ
V

(
s2 − u2

) )
. (2.42)
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pA pB

γ

k1 k2

e− e−

q q

(a) Electromagnetic.

pA pB

Z0

k1 k2

e− e−

q q

(b) Electroweak.

Figure 3: e−q → e−q scattering in lowest order.

2.1.4. Final result

Adding all contributions the full invariant amplitude is |M|2 = |Mγ |
2 + |MZ |

2 +
∑

spin <
(
MγM

†

Z

)
.

|Mγ |
2 = 2e4

s2 + u2

t2
, (2.43)

|MZ |
2 =

e4

8c4W s4W

1(
t − m2

Z

) 2 [ (
(geV )

2 + (ae
V )

2
) (

(g
µ
V )

2 + (aµ
V )

2
) (

s2 + u2
)
+ 4geVg

µ
Vae

Vaµ
V

(
s2 − u2

) ]
(2.44)

and
∑
spin

<

(
MγM

†

Z

)
=

e4

2c2W s2W

1

t
(
t − m2

Z

) (
−2geVg

µ
V

(
s2 + u2

)
− 2ae

Vaµ
V

(
s2 − u2

) )
. (2.45)

All three amplitudes have terms dependent on s2 and u2. More specifically contributions linear in(
s2 + u2

)
and

(
s2 − u2

)
.

2.2. Electron-Quark Scattering

One way of examining electron-quark scattering, as seen in Fig. 3, in the first place is to transfer the
solution of e−µ− → e−µ− scattering to e−q → e−q. Quarks are spin-12 , this means the wave function
of the ingoing and outgoing particle stay u(k1) and u(k2). Also, the propagators do not change.
The only difference is in the vertices. Before, all charges were −1 · e. The fractional charge of quarks
eq is different and will be +2

3 · e or −1
3 · e depending on the type of quark. Also, for quarks we have

to sum (and average) over color. The solution has no difference in color and so averaging cancels
the sum. The quick solution is

|Mγ |
2 = 2e4e2q

s2 + u2

t2
, (2.46)

|MZ |
2 =

e4e2q
8c4W s4W

1(
t − m2

Z

) 2 [ (
(geV )

2 + (ae
V )

2
) (

(g
q
V )

2 + (aq
V )

2
) (

s2 + u2
)
+ 4geVg

q
Vae

Vaq
V

(
s2 − u2

) ]
(2.47)

10
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and
∑
spin

<

(
MγM

†

Z

)
=

e4e2q
2c2W s2W

1

t
(
t − m2

Z

) (
−2geVg

q
V

(
s2 + u2

)
− 2ae

Vaq
V

(
s2 − u2

) )
. (2.48)

One remark before continuing: The change might not seem big, but it is easy to oversee the different
coupling indices. g

q
V and aq

V are different to g
µ
V and aµ

V .

Now we want to broaden our horizon. Already we have calculated the amplitude for e−q → e−q

scattering. But when dealing with an accelerator, it is not the only interaction that can happen.
There might be a charged current propagating between the particles. The four interactions
e−(u, c) → νe(d, s) and e−(d, s) → νe(u, c) suddenly emerge. To conclude, we now want to cover e±p

scattering for vector bosons, namely γ, Z and W±, for neutral current and charged current. The
diagrams are shown in Fig. 4 and all here considered interactions are listed in Table 1. Interactions
with initial electron neutrino νe are not included here, because we won’t compare to such data.

Table 1: All possible, considered interactions.
e+; γ, Z e−; γ, Z e−; W− e+; W+

u e+u
γ,Z
→ e+u e−u

γ,Z
→ e−u e−u

W−

→ νed

c e+c
γ,Z
→ e+c e−c

γ,Z
→ e−c e−c

W−

→ νes

d e+d
γ,Z
→ e+d e−d

γ,Z
→ e−d e+d

W+

→ νeu

s e+s
γ,Z
→ e+s e−s

γ,Z
→ e−s e+s

W+

→ νec

u e+u
γ,Z
→ e+u e−u

γ,Z
→ e−u e+u

W+

→ νed

c e+c
γ,Z
→ e+c e−c

γ,Z
→ e−c e+c

W+

→ νes

d e+d
γ,Z
→ e+d e−d

γ,Z
→ e−d e−d

W−

→ νeu

s e+s
γ,Z
→ e+s e−s

γ,Z
→ e−s e−s

W−

→ νec

2.2.1. Generalized Leptonic Tensor

We can calculate all amplitudes from Table 1 in a generalized fashion. This way the invariant
amplitudes can quickly be solved and calculations won’t be so long as up to here. A generalized
leptonic tensor shall be determined in this section. It will have a structure able to cover parity-
violating terms yielded by the bosons. This was inspired by Eq. 15.112 in [Kov]. To cover separate
contributions in parity, the general leptonic tensor has the form

L̃µν(pA, pB) =
1

2

∑
spins

(u(pB) (ALγ
µPL + ARγ

µPR) u(pA)) (u(pB) (BLγ
νPL + BRγ

νPR) u(pA))
∗ .

(2.49)
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pA pB

γ

k1 k2

e± e±

q q

(a) Electromagnetic,
neutral current.

pA pB

Z

k1 k2

e± e±

q q

(b) Electroweak,
neutral current.

pA pB

W−

k1 k2

e− νe

u/c d/s

(c) Electroweak,
charged current.

pA pB

W+

k1 k2

e+ νe

d/s u/c

(d) Electroweak,
charged current.

Figure 4: e±q scattering in lowest order. Neutral current e±q scatt. is composed out of he left half
diagrams (Figs. 4a and 4b) and charged current e− displayed in Fig. 4c, e+ in Fig. 4d.

AL/R and BL/R are the parts that depict the diverse behavior under helicity. Repeat the procedure
from Section 2.1. For the conjugation we use the following rules:

{
γ5, γξ

}
= 0 ⇒

{
PL/R, γ

ξ
}
= 0

(u(pB) (BLγ
νPL + BRγ

νPR) u(pA))
∗ = u†(pA)

(
BLPLγ

ν† + BRPRγ
ν†

)
γ0u†(pB) (2.50)

= u(pA)γ
0 (BLPRγ

ν + BRPLγ
ν) u(pB) (2.51)

= u(pA) (BLγ
νPL + BRγ

νPR) u(pB) (2.52)

To evaluate we make use of trace theorems from Appendix A.2 and Appendix A.1 namely∑
spin u(k)u(k) = �k + m and

∑
spin v(k)v(k) = �k − m, while neglecting the masses they are the

same. This means there is no difference for particles and antiparticles.

L̃µν =
1

2

∑
spins

(u(pB) (ALγ
µPL + ARγ

µPR) u(pA)) (u(pA) (BLγ
νPL + BRγ

νPR) u(pB)) (2.53)

=
1

2

∑
spins

[u(pB)u(pB)] (ALγ
µPL + ARγ

µPR) [u(pA)u(pA)] (BLγ
νPL + BRγ

νPR) (2.54)

=
1

2
Tr{�pB (ALγ

µPL + ARγ
µPR) �pA (BLγ

νPL + BRγ
νPR)} (2.55)

PL and PR are projection operators for chirality as shown in Appendix A.3, so:

=
1

2
(ALBL Tr{�pBγ

µ
�pAγ

νPL} + ARBR Tr{�pBγ
µ
�pAγ

νPR}) (2.56)

=
1

4

(
(ALBL + ARBR)Tr{�pBγ

µ
�pAγ

ν} + (−ALBL + ARBR)Tr
{
�pBγ

µ
�pAγ

νγ5
} )

(2.57)

= (ALBL + ARBR)
(
pµ
A

pνB + pµBpνA − (pApB) g
µν ) + i (ALBL − ARBR) pA,ρpB,σε

µνρσ (2.58)

For the photon exchange the general couplings are AL/R = BL/R = e so

L̃µν
γγ = 2e2

(
pµ
A

pνB + pµBpνA − (pApB) g
µν ) , (2.59)

12



2. Preliminaries

the interference term with AL/R = e and BL/R = g
2cW

(gV ± aV ) evaluates to

L̃µν
γZ = L̃µν

Zγ =
eg
2cW

(
2gV

(
pµ
A

pνB + pµBpνA − (pApB) g
µν ) + 2iaV pA,ρpB,σε

µνρσ )
. (2.60)

Knowing g = e
sW

this equals

=
e2

cW sW

(
gV

(
pµ
A

pνB + pµBpνA − (pApB) g
µν ) + iaV pA,ρpB,σε

µνρσ )
. (2.61)

For the Z exchange both AL/R = BL/R = g
2cW

(gV ± aV )

L̃µν
ZZ =

e2

4c2W s2W

[
2
(
g2V + a2V

) (
pµ
A

pνB + pµBpνA − (pApB) g
µν ) + 4igVaV pA,ρpB,σε

µνρσ
]
. (2.62)

Lastly for the W± exchange AL = BL = g
√
2

and AR = BR = 0, where g = e
sW

, thus (see vertex factor
in Appendix A.4)

L̃µν
W =

g2

2

(
pµ
A

pνB + pµBpνA − (pApB)g
µν + ipA,ρpB,σε

µνρσ )
. (2.63)

This already shows the benefit of the general leptonic tensor. To get to the invariant amplitude is
only one step away.

2.2.2. Invariant Amplitudes

The goal is to acquire four different invariant amplitudes: e±q with neutral current |M±
NC |

2 =

|M±
γ |

2 +
∑

spin <
(
M±

γM
±†

Z

)
+ |M±

Z |
2 and e±q with charged current |M±

CC |
2 = |M±

W |2.
As a refresher: the definitions for the coupling coefficients and axial/vector couplings stay the same.
e f is the particle charge in units |e|,

CL = I3Lf − e f sin θW and CR = −e f sin θW (2.64)

where I3Lf is the weak isospin of the fermion. The second parameterization is:

gv = CL + CR = I3Lf − 2e f sin θW, av = CL − CR = I3Lf . (2.65)

For simplicity, we take the constants for the electron e−. This way the sign in the amplitudes index
smoothly transfers to the actual outcome, without changing constants.
With the Feynman rules, the diagrams in Fig. 4 can be evaluated to

M±
γ = u(pB)(ie)γµu(pA) ·

gµν

(pA − pB)
2
· u(k2)(ieeq)γνu(k1) (2.66)

|M±
γ |

2 =
e2q
t2

L̃µν
γγ (pA, pB)L̃

µν
γγ (k1, k2)gµν (2.67)

13
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=
4e4e2q

t2
(
pµ
A

pνB + pµBpνA − (pApB) g
µν ) (

k1,µk2,ν + k2,µk1,ν − (k1k2) gµν
)

(2.68)

=
4e4e2q

t2
(
2 (pAk1) (pBk2) + 2 (pAk2) (pBk1)

− 2 (pApB) (k1k2) − 2 (k1k2) (pApB) + 4 (pApB) (k1k2)
)

(2.69)

s = (pA + k1)
2
' 2pAk1, u = (pA + k2)

2
' 2pAk2

=
4e4e2q

t2
2
(
(pBk2)︸  ︷︷  ︸

s
2

(pAk1)︸  ︷︷  ︸
s
2

+(pBk1)︸  ︷︷  ︸
− u

2

(pAk2)︸  ︷︷  ︸
− u

2

)
= 2e4e2q

s2 + u2

t2
. (2.70)

The solution is equal to one of the first calculation in Section 2.1.1. For the Z boson

M±
Z = u(pB)

(
ig

cos θW

)
γµ

(
Ce±

L PL + Ce±

R PR

)
u(pA) ·

gµν

t − m2
Z

· u(k2)
(

ig
cos θW

)
γν

(
Cq
LPL + Cq

RPR

)
u(k1).

(2.71)

For particles the second leptonic tensor is L̃µν
ZZ(k1, k2), for antiparticles k1 and k2 swap. This causes

two possible signs further on. The upper one describes particles, the lower one antiparticles.

|M±
Z |

2 =
1(

t − m2
Z

) 2 L̃µν
ZZ L̃µν

ZZgµν (2.72)

=
e4(

t − m2
Z

) 2 1

16c4W s4W

[
4
(
ge

−

V
2 + ae−

V
2
) (

g
q
V

2 + aq
V

2
)
(2 (pAk1) (pBk2) + 2 (pAk2) (pBk1))

± 16ge
−

V g
q
Vae−

V aq
V pA,ρpB,σk1,αk2,βεµνρσεµναβ

]
(2.73)

pA,ρpB,σk1,αk2,βεµνρσεµναβ = −pA,ρpB,σk1,αk2,β2
(
δ
ρ
αδ

σ
β − δ

ρ
βδ

σ
α

)
= −2 ((pBk2) (pAk1) − (pBk1) (pAk2))

=
e4(

t − m2
Z

) 2 1

16c4W s4W

[
2
(
ge

−

V
2 + ae−

V
2
) (

g
q
V

2 + aq
V

2
) (

s2 + u2
)
∓ 8ge

−

V g
q
Vae−

V aq
V

(
s2 − u2

) ]
.

(2.74)

Equaling the first calculated amplitude. The interference term evaluates much quicker now, too:∑
spin

<

(
M±

γM
±†

Z

)
=

2eq
t
(
t − m2

Z

) L̃µν
γZ(pA, pB)L̃

µν
γZ(k1, k2)gµν (2.75)

=
2e4eq

t
(
t − m2

Z

) 1

4c2W s2W

(
− 2ge

−

V g
q
V
((pAk1) (pBk2) + (pAk2) (pBk1))

∓ 2ae−

V aq
V
((pAk2) (pBk1) − (pAk1) (pBk2))

)
(2.76)

=
2e4eq

t
(
t − m2

Z

) 1

4c2W s2W

(
−2ge

−

V g
q
V

(
s2 + u2

)
± 2ae−

V aq
V

(
s2 − u2

) )
(2.77)
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mW is the W boson mass. For the charged current a difference in quark/antiquark scattering emerges.
When assembling M for antiparticles, the order of multiplication is inverse to the same for particles.
The Levi-Civita-Tensor in L̃µν

W isn’t interchangeable without a change in signs. There are four
different configurations: (pA, pB)(k1, k2), (pA, pB)(k2, k1), (pB, pA)(k1, k2) and (pB, pA)(k2, k1). The
result is

|M±
W |2 =

1(
t − m2

W

) 2 L̃µν
W L̃µν

W gµν (2.78)

=
e4(

t − m2
W

) 2 1

s4W

(
2 (pAk1) (pBk2) + 2 (pAk2) (pBk1) ∓ pA,ρpB,σk1,αk2,βεµνρσεµναβ

)
(2.79)

=
e4(

t − m2
W

) 2 1

s4W

(
s2 + u2

2
∓

s2 − u2

2

)
(2.80)

The sign in |M±
W |2 describes the e±, but the sign in the resulting expression is + for particle-particle,

antiparticle-antiparticle and − for the other two scatterings.
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3. Electron-Proton Scattering

p(p)

e(k)
e(k′)

γ|Z|W±

qi(xp) qi(xp
′) }X

1

Figure 5: Inelastic electron-proton
scattering.4

After all these preliminaries, we can finally stitch the pieces
together. The electron-proton scattering is viewed at large
energy transfers Q2 = −q2 � M2 (“Deep”) and for the
proton breaking up, that is at a large invariant mass of the
collision debris W2 � M2 (“Inelastic”). In Fig. 5 we draw
a diagram to show the corresponding relevant variables.
According to the parton model, the proton cross section
can be written as a sum of incoherent quark scattering like
[HM84, p. 193, 9.17](

dσe±p

dx dQ2

)
ep→eX

=
∑
q

∫ 1

0
dξ fq(ξ)

(
dσ̂q

dx dQ2

)
eqi→eqi

(3.1)

with the probability fq(ξ) of finding quark q with the momentum fraction ξ.
The inelastic scattering neglecting the mass of the proton compared to the energy of the incoming
lepton can be written in this general form [Kov, p. 227, 15.127]

dσ
dx dQ2

=
2πα2

xQ4

[
(2xF1 − F2) y

2 +
(
1 + (1 − y)2

)
F2 ±

(
1 − (1 − y)2

)
xF3

]
=

2πα2

xQ4

[
Y+F2 − y2FL ± Y−xF3

]
(3.2)

where Y± = 1±(1 − y)2 and FL = F2−2xF1. F1(x,Q2), F2(x,Q2), and F3(x,Q2) are called form factors
and are in general functions of the momentum fraction x and the energy transfer Q2. Dependent on
the interaction they contribute differently.
One can simplify the elastic partonic cross section using invariant kinematic variables. The
transformation is

dσ̂e±q

dx dQ2
= −

1

Q2

dσ̂e±q

dt̂
δ (x − ξ) . (3.3)

where the δ-function sets ξ to the Bjorken x, see [Mar94, p. 9]. For the following fractional
Mandelstam variables with hats are introduced

ŝ = (xp + k)2 ' 2xpk ' xs, t̂ = −Q2 = −xys, û = −ŝ − û = −x (1 − y) s (3.4)

where y = 2pq
s = Q2

xs . Now the invariant amplitudes from Section 2.2.2 will be incorporated to a
differential cross section so that it is possible to compare them with measured data.

4This one diagram was drawn using feynmp [Ohl96].
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3.1. Neutral Current

d2σ̂
e±q
NC

dt̂
=

1

16π ŝ2

(
|M±

γ |
2 + |M±

γZ |
2 + |M±

Z |
2
)
=

1

16π ŝ2
|M±

NC |
2 (3.5)

=
1

16π ŝ2

(
2e4e2q

ŝ2 + û2

t̂2
+

2

t̂
(
t̂ − m2

Z

) e4eq
4c2W s2W

(
−2ge

−

V g
q
V

(
ŝ2 + û2

)
± 2ae−

V aq
V

(
ŝ2 − û2

) )
+

1(
t̂ − m2

Z

) 2 e4

16c4W s4W

(
2
(
ge

−

V
2 + ae−

V
2
) (

g
q
V

2 + aq
V

2
) (

ŝ2 + û2
)
∓ 8ge

−

V g
q
Vae−

V aq
V

(
ŝ2 − û2

) ) )
,

With ŝ2±û2

ŝ2
= 1±

x2(1−y)2s2

x2s2
= 1± (1− y)2 the differential cross section is transferred in an equivalent

base using only y. For a measurement, it is rather easy to determine y.

d2σ̂
e±q
NC

dx dQ2
=

2πα2

Q4

(
e2q

{
1 + (1 − y)2

}
+

eq
c2W s2W

t̂
t̂ − m2

Z

(
±2ge

−

V g
q
V

{
1 + (1 − y)2

}
− 2ae−

V aq
V

{
1 − (1 − y)2

} )
+

1

32c4W s4W

t̂2(
t̂ − m2

Z

) 2 (
2
(
ge

−

V
2 + ae−

V
2
) (

g
q
V

2 + aq
V

2
) {

1 + (1 − y)2
}
∓ 8ge

−

V g
q
Vae−

V aq
V

{
1 − (1 − y)2

} ) )
· δ (x − ξ) . (3.6)

Table 2: The fractional charge of the electron and U-, D-type quarks. For the antiparticles the sign
of both the electrical charge and weak isospin changes.

e− U D
e f −1 +2

3 −1
3

I3Lf , a f
V −1

2 +1
2 −1

2

g
f
V −1

2 + 2sW +1
2 − 4

3 sW −1
2 + 2

3 sW

3.2. Charged Current

For the charged current, the quark sum acts differently. Charged current here describes the
interactions in the two most right columns in Table 1. Depending on whether or not the ingoing
two particles are antiparticles. The distinction between U- and D-type quarks as shown in Table 2
generalizes the quark situation appropriately. Again only quarks below the b-quark mass threshold
are minded. Particles of greater mass shouldn’t play a significant role in the processes. xU is the
sum of up- and charm-quark distributions and xD the sum of down- and strange-quarks. The
antiparticles are of course the sum of the anti-quarks.

xU = xu + xc xU = xu + xc xD = xd + xs xD = xd + xs (3.7)
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For the differential cross sections then the following holds:

d2σ
e+p
CC

dx dQ2
=

1

16π ŝ2

(
|MU

W |2 fU(x) + |MD
W |2 fD(x)

)
=

1

16π

1(
t̂ + m2

W

) 2 e4

s4W

(
ŝ2

ŝ2
fU(x) +

û2

ŝ2
fD(x)

)
(3.8)

d2σ
e−p
CC

dx dQ2
=

1

16π

1(
t̂ + m2

W

) 2 e4

s4W

(
ŝ2

ŝ2
fU(x) +

û2

ŝ2
fD(x)

)
(3.9)

To move into the common base û2

ŝ2
=

x2(1−y)2s2

x2s2
= (1 − y)2 does the trick.
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4. PDF Comparisons

And finally, we will compare the results with measured data. The latest data on DIS come from
the H1 and ZEUS Collaborations which have performed e±p scattering experiments with nearly
4π coverage and published data for the charged and neutral current including interference effects
[HZ15]. The tactic is the following. We will use our calculation coupled to different PDFs and
compare the predicitions to HERA data.
The compared sets are CTEQ6 from 2002 [Pum+02], CT10 from 2010 [Lai+10] and CT18NNLO
from 2019 [Hou+19]. The three come from the Coordinated Theoretical-Experimental Project on
QCD (CTEQ). Also HERAPDF20_LO_EIG (2015) from the H1 and ZEUS Collaborations will be
examined, as the group responsible for the data against which we compare.
First the data from HERA [HZ15] are given in the form of the reduced neutral-current cross section

σ±
r,NC =

d2σ
e±p
NC

dx dQ2
·

Q4x
2πα2Y+

= −
y2

Y+
F̃L + F̃2 ∓

Y−
Y+

xF̃3, (4.1)

where Y± are shorthands for 1 ± (1 − y)2. This form is equivalent to the one derived in Eq. (3.6).
At leading order in this case F̃L = F̃2 − 2xF̃1 = 0. For a more comprehensive notation, the paper
suggests using

F̃2 = F2 − κZg
e−

V · FγZ
2 + κ2Z

(
ge

−

V
2 + ae−

V
2
)
· FZ

2

xF̃3 = −κZae−

V · xFγZ
3 + κ2Z2g

e−

V ae−

V · xFZ
3 . (4.2)

After a comparison of our form factors to their notation

F2 =
∑
q

e2q fq(x), FγZ
2 = 2

∑
q

eqg
q
V fq(x), FZ

2 =
∑
q

(
g
q
V

2 + aq
V

2
)

fq(x),

xFγZ
3 = 2

∑
q

eqaq
V fq(x), xFZ

3 = 2
∑
q

g
q
Vaq

V fq(x). (4.3)

The H1 and ZEUS Collaborations also published data for the charged current in a reduced form

σ±
r,CC =

2πx
G2

F

[
m2
W + Q2

m2
W

] 2 d2σ
e±p
CC

dx dQ2
, (4.4)

with the Fermi coupling constant GF = πα√
2s2Wm2

W

. For us that means

σ+
r,CC = 4π

(
x fU(x) + (1 − y)2 x fD(x)

)
, (4.5)

σ−
r,CC = 4π

(
x fU(x) + (1 − y)2 x fD(x)

)
. (4.6)
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4.1. Numerics

Before we can compare anything we have to calculate the cross sections numerically. This is done
with function definitions in python3. The code starts with imports. Later on, we should calculate the
cross sections with uncertainties. For this, the type ufloat, a float with uncertainty, is imported.
Two functions from numpy will be needed.

1 # Imports
2 from uncertainties import ufloat as uf
3 from numpy import arange, sqrt

Secondly, we define necessary natural constants. And sW , c2W , cW are deduced from s2W . We neglect
the uncertainties of mZ and s2W , because they are in a small enough magnitude. We take both from
the last “Review of Particle Physics” [PDG+20b]. We then copy axial and vector couplings from
Table 2.

5 # Natural Constants
6 mZ = 91.1876 # ,0.0021) # GeV - Z-Boson mass mZ

7 sW2 = 0.23121 # ,0.00004) # 1 - sin(weak-mixing angle)^2 s2W
8 sW = sW2 ** (1 / 2) # 1 - sin(weak-mixing angle) sW
9 cW2 = 1 - sW2 # 1 - cos(weak-mixing angle)^2 c2W

10 cW = cW2 ** (1 / 2) # 1 - cos(weak-mixing angle) cW
11 # Axial and Vector Couplings
12 v_e = -1 / 2 + 2 * sW # Electron ge

V

13 a_e = -1 / 2 # ae
V

14 e_u = +2 / 3 # Up-type eu
15 v_u = +1 / 2 - 4 / 3 * sW # gu

V

16 a_u = +1 / 2 # au
V

17 e_d = -1 / 3 # Down-type ed
18 v_d = -1 / 2 + 2 / 3 * sW # gd

V

19 a_d = -1 / 2 # ad
V

Before continuing to the cross sections, we define auxiliary functions. The functions are kZ , y and
Y± from the prior notation.

21 # Auxiliary functions
22 def k_Z(Q2): return (4 * cW2 * sW2) ** (-1) * (Q2) / (Q2 + mZ ** 2) # 1 - Q in GeV
23 def y(Q2, x, s): return Q2 / (x * s) # 1 - Q in GeV, x-Bjorken, s in GeV2

24 def Y(sign, Q2, x, s): return 1 + sign * (1 - y(Q2, x, s)) ** 2
25 # 1 - sign of Y±, Q in GeV, x-Bjorken, s in GeV2

First, we implement a version of the cross sections without the uncertainty, the reason for that is
the way we calculate uncertainties with the PDFs on hand. To get a hold of PDFs and a consistent
interface, we use the python implementation of LHAPDF6 [Buc+15]. Let’s start with σ±

NC. When
given a PDF of class PDF() the function will calculate the nominal/center value of σ±

NC(Q
2, x, s)

20



4. PDF Comparisons

for that one point. The function only consists out of a return statement as Eq. (4.1).

57 def sigmaNC(sign, pdf, Q2, x, s):
58 ”””
59 :param sign:(-/+1) Charge of incoming electron / positron
60 :param pdf: PDF() General interface for access to parton density information
61 :param Q2: float Negative four-momentum-transfer squared in GeV^2
62 :param x: float Bjorken x
63 :param s: float Total center-of-mass energy in GeV^2
64 :return: float Neutral current cross section for given lhapdf.PDF
65 ”””
66 return F2(pdf, Q2, x) - sign * Y(-1, Q2, x, s) / Y(+1, Q2, x, s) * xF3(pdf, Q2, x)

The helper functions F2 and xF3 are also in the same form as analytically computed in Eq. (4.2).
The PDF is handed down and x fq(x) here evaluated through pdf.xfxQ2(pid, x, Q2). pid
sets the quark kind after the Monte Carlo particle numbering scheme [PDG+20a]. They have been
defined before as follows.

27 def F2(pdf, Q2, x):
28 ”””
29 :param pdf: PDF() General interface for access to parton density information
30 :param Q2: float Negative four-momentum-transfer squared
31 :param x: float Bjorken x
32 :return: float Form Factor F_2 for
33 ”””
34 return ((e_u ** 2
35 - k_Z(Q2) * v_e * 2 * e_u * v_u
36 + k_Z(Q2) ** 2 * (v_e ** 2 + a_e ** 2) * (v_u ** 2 + a_u ** 2)
37 ) * (pdf.xfxQ2(2, x, Q2) + pdf.xfxQ2(4, x, Q2) # up, charm
38 + pdf.xfxQ2(-2, x, Q2) + pdf.xfxQ2(-4, x, Q2)) # anti - up, charm
39 + (e_d ** 2
40 - k_Z(Q2) * v_e * 2 * e_d * v_d
41 + k_Z(Q2) ** 2 * (v_e ** 2 + a_e ** 2) * (v_d ** 2 + a_d ** 2)
42 ) * (pdf.xfxQ2(1, x, Q2) + pdf.xfxQ2(3, x, Q2) # down, strange
43 + pdf.xfxQ2(-1, x, Q2) + pdf.xfxQ2(-3, x, Q2))#anti-down, strange
44 )
45

46 def xF3(pdf, Q2, x): # doc same to F2, but for xF3
47 return 2 * ((- k_Z(Q2) * a_e * e_u * a_u
48 + k_Z(Q2) ** 2 * 2 * v_e * a_e * v_u * a_u
49 ) * (pdf.xfxQ2(2, x, Q2) + pdf.xfxQ2(4, x, Q2) # up, charm
50 - pdf.xfxQ2(-2, x, Q2) - pdf.xfxQ2(-4, x, Q2))# anti- up, charm
51 + (- k_Z(Q2) * a_e * e_d * a_d
52 + k_Z(Q2) ** 2 * 2 * v_e * a_e * v_d * a_d
53 ) * (pdf.xfxQ2(1, x, Q2) + pdf.xfxQ2(3, x, Q2) # down, strange
54 - pdf.xfxQ2(-1, x, Q2) - pdf.xfxQ2(-3, x, Q2))
55 ) # anti - down, strange
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For the charged current σ±
CC the function is shorter. For σ+

CC the variable sign has to be +1, for
σ−

CC it must be set to -1. The code then either realizes σ+
CC (Eq. (4.5)) or σ−

CC (Eq. (4.6)).

68 def sigmaCC(sign, pdf, Q2, x, s): # doc same as sigmaNC() but for charged current
69 return (
70 (pdf.xfxQ2(-sign * 2, x, Q2) + pdf.xfxQ2(-sign * 4, x, Q2)) # up, charm
71 + (1 - y(Q2, x, s)) ** 2 *
72 (pdf.xfxQ2(sign * 1, x, Q2) + pdf.xfxQ2(sign * 3, x, Q2)) # down, strange
73 )

Now for the functions with uncertainty, a list of different PDFs is given. The nominal value is
calculated using the zeroth PDF in the list, the best fit S0. The uncertainty can be calculated from
the formula

∆σ =
1

2

©«
Np∑
i=1

[
σ

(
S+
i

)
− σ (S−

i )
] 2ª®¬

1/2

(4.7)

where S±
i are the error PDFs. When creating a PDF there are different parameters. The other

PDFs S±
i consist out of functions where the fit parameters are offset by their uncertainty. Once in

the positive direction S+
i and once in the negative S−

i . Sometimes combinations out of multiple
parameters are taken, too. One can think of the PDFs as the “behavior of the global χ2 function in
the neighborhood of the minimum”. Obtained by diagonalization of the Hessian matrix when fitting
a PDF [Pum+02]. In the code it is realized as:

75 def sigmaNC_unc(sign, pdfs, Q2, x, s):
76 ”””
77 Doc same to sigmaNC, but
78 :param pdfs: PDFSet() List of PDF(). First one as central one
79 and then pairwise eigenvector pdfs
80 :return: ufloat neutral current cross section with uncertainties
81 ”””
82 sigmas = []
83 for i in arange(1, len(pdfs), 2):
84 sigmas.append((sigmaNC(sign, pdfs[i], Q2, x, s)
85 - sigmaNC(sign, pdfs[i + 1], Q2, x, s)) ** 2)
86 return uf(sigmaNC(sign, pdfs[0], Q2, x, s), sqrt(sum(sigmas)) / 2)
87

88 def sigmaCC_unc(sign, pdfs, Q2, x, s): # doc same as sigmaNC_unc() but for ch. current
89 sigmas = []
90 for i in arange(1, len(pdfs), 2):
91 sigmas.append((sigmaCC(sign, pdfs[i], Q2, x, s)
92 - sigmaCC(sign, pdfs[i + 1], Q2, x, s)) ** 2)
93 return uf(sigmaCC(sign, pdfs[0], Q2, x, s), sqrt(sum(sigmas)) / 2)
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Figure 6: Neutral current reduced cross section for e+ (red) and e− (blue). Measurements with
error bars and the prediction using HERAPDF20_LO_EIG as error bands. To separate
different x, everything is stretched by 2i and plotted logarithmically. The interval of valid
Q2 is drawn in the bottom.

4.2. Neutral Current

In Fig. 6 we show the σ±
r, NC data compared to the prediction calculated with the HERAPDF20_LO_EIG

fit. If there are no more than at least four data points that have x in common, we leave them out
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in the plots. This is in order for a better perceptibility and less cluttering. The measured HERA
data compared to numbers from our calculation with the HERAPDF20_LO_EIG, in Fig. 6, match
well, when observed by the eye. For shrinking x below 0.008 or Q2 below 10 GeV2 the discrepancy
between calculated and measured data grows. Of course, this can be expected to happen below
the valid Q2 of 1 GeV2, but the trend starts already before. The same is true for x > 0.13 and for
Q2 > 103 GeV2. One reason for the deviation is that our calculation is only done at tree level. Data
is an all order prediction. Another more striking reason is that the patron densities x fq(x) only
depend on x itself, but not Q2 in our calculation. This explains a deviation at marginal values of
x, Q2, and both. A shortcoming of the prediction is the small uncertainties at the points where
the HERA data has more variation or is scattering more. The prediction does not resemble the
variation of the cross section at these points and should have a bigger uncertainty in the patron
density functions.

When looking at the oldest PDF we’ll compare to CTEQ6 in Fig. 7, a bigger uncertainty is
immediately visible. Also, the deviation for smaller Q2 and x deviates in the other direction than
the HERA 2.0 Predictions go. A reason for this can be the different data set CTEQ6 uses. Also,
the group in [Pum+02] did not have measurements at that low Q2 as the predictions go to. For Q2

under the valid Q2 as given from CTEQ6, uncertainties expand. This is desirable as opposed to the
behavior of HERA 2.0. For great x the two predictions agree with one another (except for x = 0.4).

With the CTEQs PDFs from 2010 we have drawn the predicted cross sections in Fig. 8. All
characteristics from CTEQ6 hold for CT10, too. Only uncertainty has gone down and for low x the
aberrance to the measurements shrank. This is due to the growing HERA-1 data which has become
accessible leading up to CT10.

For CT18NNLO, part of the latest set CTEQ-TEA PDFs (2019), predictions are in Fig. 9. They
created CT18NNLO using 28 different data sets, including the combined HERA data as the largest
sets of all. For medium and greater x the behavior of the prediction has not changed to the eye.
Only uncertainty has improved. But even so, HERA 2.0 claims to have smaller uncertainty than
CT18NNLO. This is true for all marginal values of x and Q2.
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Figure 7: Comparison of neutral current reduced cross section with CTEQ6 from 2002 for e+ (red)
and e− (blue) and the HERA PDF in black. Measurements with error bars and the
predictions as error bands. To separate different x, everything is stretched by 2i and
plotted logarithmically. The interval of valid Q2 is drawn in the bottom.
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Figure 8: Comparison of neutral current reduced cross section with CT10 from 2010 for e+ (red)
and e− (blue) and the HERA PDF in black. Measurements with error bars and the
predictions as error bands. To separate different x, everything is stretched by 2i and
plotted logarithmically. The interval of valid Q2 is drawn in the bottom.
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Figure 9: Comparison of neutral current reduced cross section with CT18NNLO from 2019 for
e+ (red) and e− (blue) and the HERA PDF in black. Measurements with error bars and
the predictions as error bands. To separate different x, everything is stretched by 2i and
plotted logarithmically. The interval of valid Q2 is drawn in the bottom.
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Figure 10: e+: Ratios between predicted neutral current reduced cross section σ+
PDF, calculated

with the four PDFs, and the measurements σ+
NC, for a selection of Bjorken x. Between

the data points, uncertainty is joined linearly.

For a better view, we computed ratios between the measurements and predictions. To distinguish
between the four PDFs we compare them for e− in Fig. 11 and e+ in Fig. 10. When dealing with
small x as 0.000 32 in Fig. 10 the scattering is great and has a drift, compared to the rest. Farther,
it should be noted that the scales of the ratios differ between the subplots. Again, for marginal
Q2 uncertainty grows (bottom right, Fig. 10) or the PDFs spread and leave the error band of the
measured value (top both, Fig. 10). Also, in both subplots in top (x = 0.000 32 and x = 0.005,
Fig. 10) the error of HERA 2.0 PDF is significantly smaller than the error bands from CTEQ PDFs.
This is to a degree that often predictions with CTEQ PDFs agree in the error bands with the
measured value, but the HERA 2.0 PDF not.
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Figure 11: e−: Ratios between predicted neutral current reduced cross section σ−
PDF, calculated with

the four PDFs, and the measurements σ−
NC, for a selection of Bjorken x. Between the

data points, uncertainty is joined linearly.

The ratios with the incoming electron e− behave similarly (Fig. 11). The differences in predicted
σ±

NC only show up for Q2 growing over at least 103 GeV2 (Fig. 6).
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4.3. Charged Current
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Figure 12: Charged current reduced cross section for e+ (red) and e− (blue). Measurements with
error bars and the prediction using HERAPDF20_LO_EIG as error bands. To separate
different x, the cross sections are each shifted.

A similar trend continues for the charged current reduced cross section. The prediction with HERA
2.0 PDF is displayed in Fig. 12. It again resembles the rough course of the measured data, but with
errors that do not match with every error bar.
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Figure 13: Comparison of charged current reduced cross section with CTEQ6 from 2002 for e+

(red) and e− (blue) and the HERA PDF in black. Measurements with error bars and the
predictions as error bands. To separate different x, the cross sections are each shifted.

Starting with CTEQ6, the prediction with greater errors already better fits the measurements, as
seen in Fig. 13. Both agree in their error intervals, mostly.

31



4. PDF Comparisons

103 104

Q2 in GeV2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

± r,
CC

+
co

ns
t.

x = 0.013
i = 5

x = 0.032
i = 4

x = 0.08
i = 3

x = 0.13
i = 2

x = 0.25
i = 1

x = 0.4
i = 0

CT10

s = 318.0 GeV

e +  Measurements
e  Measurements
e +  Prediction
e  Prediction
Hera Predictions

Figure 14: Comparison of charged current reduced cross section with CT10 from 2010 for e+ (red)
and e− (blue) and the HERA PDF in black. Measurements with error bars and the
predictions as error bands. To separate different x, the cross sections are each shifted.

CT10 PDF brings the prediction to a deviation in higher cross sections, so that the errors start to
not overlap with the prediction using HERA 2.0. This effect is greater for the two lowest x (Fig. 14).
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Figure 15: Comparison of charged current reduced cross section with CT18NNLO from 2019 for
e+ (red) and e− (blue) and the HERA PDF in black. Measurements with error bars
and the predictions as error bands. To separate different x, the cross sections are each
shifted.

With the current CT18NNLO PDF the trend continues and more predictions have non-overlapping
error bands (Fig. 15). With the ratios in Figs. 16a and 16b the trend becomes more clear. Over
the years the CTEQ PDFs depart from HERA 2.0 PDF, while still agreeing with the measured
data in the errors, for most of the data points. If someone wouldn’t know that CTEQ takes other
experiments into account, this should be the point of realization. Other, not displayed data sets
pull the prediction to themselves. Most of the other data sets measure different physical phenomena
[Hou+19, tab. 1].
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PDF, calculated with

the four PDFs, and the measurements σ±
CC, for a selection of Bjorken x. Between the
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5. Summary

Within this bachelor’s thesis, the goal was to compute the cross section of e±p scattering and observe
the development of PDFs over time. First, e−µ− we calculated scattering in-depth with γ and Z

boson exchange and interference, to get a taste of the workflow from the Feynman diagram to
Lorentz invariant amplitude. We could facilitate the gained knowledge to see what e−q results
in. After this overview, a generalized leptonic tensor was computed to speed up the process of
calculating an invariant amplitude. Before e+ was missing and with the generalized leptonic tensor
also the W boson exchange was easily done. e±q scattering for charged and neutral current has
been solved, the parton model was the answer to the e±p process. After converting the invariant
amplitude M into a differential cross section d2σe±p

dx dQ2 , the solution could be compared. The H1 and
ZEUS collaborations had data to compare to. Numerical implementation into Python then allowed
using LHAPDF6, a straightforward way to calculate a prediction of the reduced cross sections.
Three PDF sets of CTEQ that span a range from 2002 to 2019 and HERA 2.0 PDF have been used
to analyze the cross section. One observation was that the HERA 2.0 PDF produced errors that
did not resemble the uncertainty of their data. A trend over the years of CTEQ PDFs is shrinking
errors, although they do not fall under the too-small uncertainties of the HERA 2.0 PDF. This is a
sign of a healthy improvement. An outlook for a further advance is incorporating more orders of
Feynman diagrams to improve the precision of prediction.
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A. Dirac Algebra

For the calculations presented in this thesis, we need the Dirac spinor algebra. In the following
section the used Lorentz invariant notation is presented and stated [Ili16; Zee10].

A.1. Dirac Matrices

Starting of with the Dirac equation
(i�∂ − m)ψ(x) = 0, (A.1)

that already introduces the notation �∂ := γµ∂µ, leads to the γµ Dirac matrices. The γµ satisfy the
Clifford algebra Cl4(R)

1

2
{γµ, γν} =

1

2
(γµγν + γνγµ) = gµν14, γµ† = γ0γµγ0. (A.2)

⇒

(
γ0

) 2
= −(γη)2 = 14, γ0† = γ0, γη† = −γη (A.3)

where µ, ν ∈ 0, 1, 2, 3, η ∈ 1, 2, 3 and 14 is the identity matrix. When asking how a Dirac spinor ψ
transforms, another matrix, namely γ5, can be constructed. The only possible product is

γ5 = iγ0γ1γ2γ3 = −
i
4
εµναβγ

µγνγαγβ (A.4)

with the convention of ε0123 = −ε0123 = 1. It isn’t called γ4 because of the historical notation of
time as the fourth dimension5. Useful relations arise from this, especially(

γ5
) 2

= γ5, γ5† = γ5 and {γ5, γ
µ} = 0. (A.5)

Also interesting in Cl4(R) are

γµγµ = 414, γµγνγµ = −2γν, εαβµνεαβσρ = 2
(
δ
µ
ρδ

ν
σ − δ

µ
σδ

ν
ρ

)
. (A.6)

δ is the Kronecker delta for which gabg
bc = δca holds. Other relations: [Nag13b]

γµ�Aγµ = −2�A γµ�A�B�Cγµ = −2�C�B�A

γµ�A�Bγµ = 4(A · B) γµ�A�B�C��Dγµ = 2(��D�A�B�C −�C�B�A��D) (A.7)

Plane wave solutions of Eq. (A.1) are [Nag13a]

ur(p) =

[ √
p · σξr

√
p · σ̄ξr

]
=

√
E + m

2


(
1 − σ ·p

E+m

)
ξr(

1 + σ ·p
E+m

)
ξr

 (A.8)

5Zee10, "The peculiar name comes about because in some old-fashioned notation the time coordinate was called x4

with a corresponding γ4." p.95.
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vr(p) =

[ √
p · σηr

−
√

p · σ̄ηr

]
=

√
E + m

2


(
1 − σ ·p

E+m

)
ηr

−

(
1 + σ ·p

E+m

)
ηr

 (A.9)

ξ1 =

[
1

0

]
, ξ2 =

[
0

1

]
, ηr = iσ2ξ

∗
r =

[
0 1

−1 0

]
ξ∗r (A.10)

and when summing over polarization, lead us to the completeness relations for particles u and
antiparticles v ∑

r=±1/2

ur ūr(p) = �p + m,
∑

r=±1/2

vr v̄r(p) = �p − m. (A.11)

A.2. Trace Theorems

For fermionic matrix elements it is near about mandatory to calculate traces of Dirac matrices. The
most basic and useful trace theorems for matrices are

tr(A) = tr
(
AT

)
, tr(A + B) = tr(A) + tr(B), tr(A1 . . . AN ) = tr(AN A1 . . . AN−1).

(A.12)

But what can we gain in terms of γ matrices? The first consequence is that tr (γµγν) = gµν tr(1) =
4gµν. γ5 is anticommutative and

(
γ5

) 2
= 1 so

tr (γν1 · · · γνn) = tr
(
γν1 · · · γνnγ5γ5

)
= tr

(
γ5γν1 · · · γνnγ5

)
= (−1)n tr

(
γν1 · · · γνnγ5γ5

)
= (−1)n tr (γν1 · · · γνn) , (A.13)

meaning any trace with an odd number of γ matrices (excluding γ5) vanishes: 0. For four γ matrices

tr
(
γδγµγηγν

)
= tr

(
γµγηγνγδ

)
= − tr

(
γµγηγδγν

)
+ 2gδν tr (γµγη)

= − tr
(
γµγηγδγν

)
+ 8gδνgµη

= tr
(
γµγδγηγν

)
− 8gηδgµν + 8gδνgµη

= − tr
(
γδγµγηγν

)
+ 8gδµgην − 8gηδgµν + 8gδνgµη, (A.14)

so tr
(
γδγµγηγν

)
= 4

(
gδµgην − gδηgµν + gδνgµη

)
.

tr
(
γδγµγηγνγ5

)
= −4iεδµην, because of the anticommutative behavior, a permutation of the γ’s

changes the sign of the trace. This means it must be proportional to εδµην. The constant −4i can
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directly be calculated. Also

tr(γµγµ) = 16 and tr(γ5γµγν) = 0. (A.15)

A.3. Chirality

It is useful to be able to decompose a Dirac field ψ into a left-handed and a right-handed part
ψ = ψL + ψR. Helicity is a freedom a particle has. It describes the direction of spin. In particle
interaction, a vertex factor as shown shortly can act on both parts differently. The physics of the
Dirac equation Eq. (A.1) still has to be independent of the chosen basis. The solution to this
are the chiral projection operators PL := 1

2

(
1 − γ5

)
and PR := 1

2

(
1 + γ5

)
for which ψL = PLψ and

ψR = PRψ.

P2
L/R =

1

4

(
1 ∓ 2γ5 +

(
γ5

) 2)
=

1

2

(
1 ∓ γ5

)
= PL/R and PLPR =

1

4

(
1 −

(
γ5

) 2)
= 0 (A.16)

This symmetry corresponds to the conservation of axial current [Zee10, pp. 98].

A.4. Feynman Rules

To evaluate a process, one has to draw all diagrams that are topologically different. Every element
of a diagram has a factor as given in the following Appendices A.4.1 to A.4.3. To gain a Lorentz-
invariant scattering amplitude M, we multiply together these factors. The order of multiplication
starts with an outgoing fermion particle, identifiable by a straight line with an arrow representing
particle flow on top, and vertex factors in between. The propagator factors connect these particle
factors [HM84; Nag13b].
We only need to look once at topologically same diagrams, because Feynmans approach to interactions
integrates over the temporal component. Here it makes no difference whether the propagator first
gets emitted or absorbed. We show this in Fig. 17. [Ohl11]

∵ intermediate states violate energy conservation and vertices can have space like
distances

∴ temporal order of t1 and t2 depends in general on the reference frame, i. e. is
undefined

• Feynman’s brilliant (re-)interpretation:

– particles with p0 = +
√

|~p|2 +m2 are propagated into the future

– anti particles with p0 = −
√
|~p|2 +m2 and opposite charges are propagated

into past

∴ charges are conserved along the arrows in (99)!

∴ the four nonrelativistic diagrams in (99) can be combined to two covariant
expressions using Feynman propagators

1
E−E0+iε

t1 t2 +
1

E+E0+iε
t2

t1

=
1

p2 −m2+iε

(100a)

1
E−E0+iε

t1

t2
+

1
E+E0+iε

t2

t1
=

1
p2 −m2+iε

(100b)

∴ the Feynman propagator allows to extend our interpretation of external, non-
interacting anti particles as particles traveling backward in time to interacting
particles.

Problem 12. Compute the propagator S(x,m) for Dirac particles in momentum space!

• propagator for massless spin-1 particles

−igµν + i(1 − ξ)
kµkν
k2+iε

k2 + iε
(101)

• the gauge parameter ξ ist arbitrary and must cancel in the final result

• partial results can depend on ξ

• the propagator for massive spin-1 particles

−igµν + ikµkν
M2

k2 −M2 + iε
(102)

is not gauge dependent, because (76 ′) can be inverted, contrary to (73 ′)

19

Figure 17: Visualization of the temporal indifference of topologically identical Feynman diagrams.
[Ohl11, p. 19]

38



A. Dirac Algebra

A.4.1. External Lines

u

v

v

u

Figure 18: In- and outgoing
fermions.

This work only deals with in- and outgoing spin-12 particles. We
read all diagrams from left to right, so we denote ingoing fermions
as u, outgoing as u, call ingoing antifermions v, and outgoing ones v.
Notice all four kinds in Fig. 18. The particles can have an assigned
momentum.

A.4.2. Internal Lines

Every internal line has an associated propagator to it, a fermion as well as a photon and W , Z

boson. The propagators used in our calculation are written down in Fig. 19.

photon
γ

−
igµν
q2

W , Z boson
W±/Z

−
i
(
gµν−pµpν/M

2
)

q2−M2

Figure 19: Propagators for the internal lines of the used vector bosons. q is the carried momentum
and M the particle’s mass.

A.4.3. Vertex Factors

The vertex factors read as in Fig. 20.

γ

f

f

Z

f

f

W±

f

f

−iQ f eγµ
−i g

cos θW γµ 1
2(g

f
V − a f

Vγ
5)

= −i g
cos θW γµ

(
C f
LPL + C f

RPR

) −i g
√
2
γµPL

Figure 20: Vertex Factors with g = e
sin θW

and projection operators PL/R. Q f is the fermion’s charge
relative to the positron’s. C f

L/R
describe the amount of coupling for the corresponding

helicity and g
f
V , a f

V vector and axial vector couplings.

The total squared transition matrix |M|2 can be calculated, when all separate diagrams have been
gathered and the invariant amplitudes Mi have been acquired. Finally

|M|2 =
∑
i

Mi ×
∑
i

M
†

i (A.17)
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When there are two different diagrams we get

|M|2 = |M1 |
2 + |M2 |

2 + 2<
(
M1M

†

2

)
. (A.18)

Lastly, the average over the possible polarizations has to be calculated to gain the unpolarized
cross section, revealing |M|2. For further insight they should examine the solution in Mandelstam
variables.
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