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1. Introduction

On-satellite image processing is subject to extremely high safety and accu-
racy standards, as error-free operation in hard real-time is mission critical in
ensuring reliable telescope imagery. Satellite on-board software must be guar-
anteed to provide several years of continuous service and maintainability. The
upcoming PLATO spacecraft (PLAnetary Transits and Oscillation of stars) is
a medium-class mission of the European Space Agency (ESA) in collaboration
with the German Aerospace Center (DLR) [ESA17]. The mission’s purpose is
to detect terrestrial exoplanets in the habitable zone of stars and characterize
its properties, e.g., radius, mass, etc., at high resolution. PLATO FGS (Fine
Guidance System) is an algorithm that provides the necessary attitude data
with an accuracy of milliarcseconds from the image data. The input domain
involved in the image processing application is enormous, so an automated test
approach for PLATO based on equivalence classes was developed in order to
find reduced test sets [WGH20b], which are essential for validating the FGS’s
robustness in determining the satellite’s attitude.

The fine guidance system is crucial for PLATO, because its failure com-
promises the mission objective. For PLATO, the FGS is required to calculate
accurate results and provide the attitude data in time. Therefore, they must
undergo extensive testing on Earth to ensure their flawless functioning in orbit.
The FGS has to accomplish its task despite cosmic rays and sensor degrada-
tion. Running tests early in the development phase is not possible without
enormous expenses. The test procedure must therefore be conducted with no
real image data of the actual space environment. Fortunately, there is the
PLATO simulator PlatoSim, which simulates photometric time series of CCD
images, also including the satellite’s position in space [Mar+14]. The developed
equivalence classes of [WGH20b] help to make the input range manageable and
to test reliability and robustness thoroughly and systematically. However, the
developed testing approach has only been evaluated with a few fault classes
yet, all of which were injected into the FGS code. In particular, how well does
the test approach perform if, for instance, cosmic rays or sensor degradation
are simulated in the input images?

To overcome this problem, we propose a systematic fault injection approach
in input data for on-board satellite image processing. Goal of this work is to
evaluate the robustness of the FGS algorithm while using the test approach of
[WGH20b]. We require our solution to meet the following criteria:

1. There should be a selection of domain-specific, realistic and relevant fault
classes.
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1. Introduction

2. The injection should be automated for distinct classes of faults.

3. Determination of the FGS’s robustness for each fault class and how well
it performs in the presence of faults.

We propose fault classes based on recent literature about, e.g., hot and
dead pixels, brighter-fatter effect, cosmic-ray events, and assess their relevance
for the PLATO mission. For the selection of relevant fault classes, we have
consulted with the PLATO development team at DLR and incorporated their
expertise. After describing the origin and relevance of each fault, we model
them to obtain a corresponding fault term. Our automated fault injection
wraps PlatoSim and is able to inject in two ways: Faults already implemented
in PlatoSim are configured before simulation and external faults are applied
to the simulation results afterwards. We realized the implementation in such a
way that adding further faults is simple and as non-invasive as possible. For the
evaluation, we compare the accuracy and precision of the FGS by error class
in multiple data representations. In order to analyze the equivalence classes of
the test approach, we compare class wise accuracy and precision with various
test suite coverages. Finally, we discuss the results of the fault injection and
summarize the robustness of the FGS.

The key contributions of our work lie in systematically testing an FGS for
distinct classes of input faults. On the one hand, there is prior work to make
star trackers resistant to single event upsets through filters and redundancy.
This is beneficial and happens quickly because errors are detected and cor-
rected on hardware level, but a detailed analysis on fault classes is missing.
The authors deliberately omit subsequent processing of the images, making the
benefit uncertain [ARM17; Ara+19; ARM20]. A much more detailed analysis
was done for DLR’s OSIRIS project, but it dealt with the complete commu-
nication and not the guidance system [Mis20]. Yet another difference is that
these studies refer to errors in FPGAs, but not in the image sensor. Bugs have
already been injected for PLATO, but these were only code errors and no ra-
diation effects [WGH19]. An analysis of the detailed input faults was already
performed in 2001 at the Jet Propulsion Laboratory, which also considered
the impact on star trackers [Han+01]. Independent fault class analysis pro-
vides domain-specific insight into which faults must be minimized to increase
mission safety.

The rest of this thesis is structured as follows. First we present the back-
ground and the theoretical basis of the work. The PLATO mission and the
FGS, which we use for the case study, are presented in more detail. The con-
cepts of equivalence class testing, robustness testing and fault injection are
then summarized. In Chapter 3, we start with the literature review and intro-
duce the selected fault classes in the following. Subsequently, we present the
implementation and explain how additional fault classes can be implemented.
In Chapter 4, we evaluate the robustness of the FGS using the accuracy as our
criterion. Finally, we summarize our results in Chapter 5.
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2. Preliminaries

First, we will outline the context of our case study PLATO and the associ-
ated Fine Guidance System as well as fundamentals for this work. Second, we
present the equivalence class test on which this thesis will build. Lastly, this
section briefly reviews the basic idea and purpose of fault injection, as well as
its core principles.

2.1. PLATO Mission and the Fine Guidance
System

In 2026, the European Space Agency (ESA) will launch a spacecraft for the
international mission PLAnetary Transits and Oscillation of stars (PLATO).
The proposal was selected to be funded through the Cosmic Vision 2015–2025
program. Mission goal is to detect habitable, terrestrial exoplanets in immedi-
ate vicinity of solar-type stars. This characterization requires the achievement
of various sub-objectives. All of them are the determination of physical pa-
rameters at high precision. The German Aerospace Center (DLR) is leading
the international consortium for PLATO and is developing the software for the
fast data processing unit (FDPU).

Achieving such high precision requires a unique satellite payload. For the
study it is necessary to observe stars of planetary systems with low noise
ratio over long periods of time. The orbiter consists of 104 CCDs (charge-
coupled device) with a total resolution of about 2.03 Gpx, the largest combined
resolution a satellite has had to date. Four CCDs compose a camera. The

Figure 2.1.: Artist’s impression of PLATO [ESA19].
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Figure 2.2.: FGS algorithm overview [Gri20].

majority of the cameras (24 of them) are responsible for long exposures of the
stars. These are called normal cameras and have an exposure time of 25 s. Two
so called fast cameras, with an exposure time of 2.5 s, are mainly responsible for
attitude determination. A rendering of the provisional satellite model can be
seen in Fig. 2.1. Using the Fine Guidance System (FGS), image data from the
fast cameras is processed into attitude data and delivered to the spacecraft’s
Attitude and Orbit Control System (AOCS) at a resolution of milliarcseconds.
This is the crux of the matter for precision, so this component is considered
particularly mission-critical. Should the FGS not meet its accuracy and timing
requirements, PLATOs mission objectives cannot be achieved [ESA17; Wit18].

The FGS—overview in Fig. 2.2—is another level of attitude control, not
included in every ordinary spacecraft and intended for higher accuracy. Aim of
the algorithm is to provide high-resolution attitude data so that PLATO can
subsequently confirm and, if necessary, adjust its orientation.

As can be seen in Fig. 2.2, it receives a target attitude, the spatial orientation
in which the fast cameras ought to be. The star catalog contains information
about the position and magnitude of the guide stars. These stars are used to
determine the attitude of the telescope by comparing their reference directions
in the star catalog with the calculated positions on the CCD. Based on the star
catalog and the target attitude, the FGS algorithm calculates for each star a
window on the CCD which is read out separately as imagette. Thus, each im-
agette contains one respective guide star. For each imagette, a two-dimensional
Gaussian distribution is fitted using a nonlinear least squares method to iter-
atively refine the model parameters called centroid. The centroid’s position is
the predicted position of the star in the imagette. With the camera model and
stellar aberration in mind, the direction of the star as seen by the fast camera,
called star vector, is calculated. From all calctualed guide star directions and
the corresponding reference directions in the star catalog, an attitude quater-
nion is calculated. The QUaternion ESTimator (QUEST) algorithm solves this
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2.2. Equivalence Class Testing

problem efficiently and iteratively [Shu78]. Accompanying this is the compu-
tation of the error covariance matrix of the measurement and a status for the
validity of the solution [Gri20].

Another difficulty to be considered is the feasibility of testing. In develop-
ment, before the satellite is on-orbit, it is not possible to test on real stellar
image data from PLATO itself. Various aspects such as heat resistance can be
simulated in cyro and heat chambers, but the complex interaction of FGS and
AOCS requires digital simulation. For this case and other image processing
systems, a realistic simulator for PLATO called PlatoSim has been developed.
PlatoSim simulates “time series of CCD images [...] including [...] all important
natural sources of noise.” [Mar+14]

2.2. Equivalence Class Testing

Process times on satellites are tight for scientific missions. A criterion is needed
to evaluate if the FGS is running correctly. Due to the enormous input domain,
it is not possible to execute all test cases. Also, it is not sufficient to select test
cases by hand, because the relevance of individual test cases is not obvious and
there are too many candidates to consider.

Equivalence class partitioning (ECP) is an appropriate strategy in this situ-
ation, leveraging the principle of “divide and conquer”. Complexity of the test
problem is reduced by continued decomposition of the input space. The test
selection simplifies to one case per class, which represents all possible test cases
of the class. A reduction of the number of test cases is achieved. Equivalence
class partitioning is well suited for non-state based software and continuous
input domains [Lig09, Sec. 2.2].

The approach presented in [WGH20b] applies ECP in the context of the
PLATO FGS. Advantageously, tests are generated automatically, while en-
suring coverage of all classes with respect to a predefined multidimensional
coverage criterion. This step allows to have a test set capable of testing the
FGS with adequate runtime. The approach works by parameterizing the input
domain and partitioning it into equivalence classes. A test has to consider the
multidimensional coverage criterion and can cut down time for all redundant
tests. Figure 2.3 shows an overview of the approach. For each selected test
case in the test suite, PlatoSim simulates a series of imagettes that are input
to the FGS. Subsequently, the test framework automatically evaluates the FGS
results based on a predefined test criterion.

In addition, in [WGH20a] the approach is extended by a genetic algorithm
using the partitioned search space. This additionally searches for a set of mis-
sion critical test cases, increasing robustness and by that mission safety.

One drawback, however, is that the ability of the testing approach to detect
errors has not yet been systematically evaluated. Errors in the source code
such as missing assignment, wrong assignment and wrong condition have been
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Figure 2.3.: Overview of the partitioning approach [WGH20b].

tested. To ensure the FGS’s robustness and to determine the error capability,
the equivalence class test must be evaluated against errors in the image data
and the behavior must be analyzed accordingly.

2.3. Robustness and Fault Injection

For many systems, in particular for safety systems, robustness is an important
requirement. The aim is to meet safety-related requirements without interrup-
tion. Robustness is the trait of software to perform “acceptable” in spite of
unwanted conditions. For example, electronic devices should continue to work
correctly after a power outage. Depending on the application, different resum-
ing actions may be appropriate [FMP05]. In the IEEE Standard Glossary of
Software Engineering Terminology it is defined as “The degree to which a sys-
tem or component can function correctly in the presence of invalid inputs or
stressful environmental conditions.” [IEE90]

For dependability of computer systems, Fault injection (FI) is an important
evaluation method. The technique studies faults and failures by intentionally
introducing them into source code or data [HTI97]. FI is useful for many
cases, e.g., robustness testing or determining error detection capability. The
behavior of the impaired system can be observed and, if desired, optimized as
given. Doing so ensures that a system meets the requirements even under the
influence of faults. This is done in order to increase error coverage while also
increasing robustness.

“The computer system has to provide the expected service despite
the presence of faults.” [CCS99, p. 50]

FI has been practiced since the 1980s and has been applied to various types of
systems over the years. A distinction is made between hardware-implemented
(HIFI) and software-implemented (SWIFI) approaches. HIFI works by intro-
ducing errors into the system from the environment, e.g., a manipulated trans-
mission channel. SWIFI emulates the errors directly in the software and is
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2.3. Robustness and Fault Injection

part of the software itself, including for instance incorrect initializations or
corrupted memory cells. Often this method is implemented on the level of
hardware description languages like the VHSIC Hardware Description Lan-
guage (VHDL) to guarantee a correct behavior. To reach a use it needs a way
to communicate an error (failure mode) [Mor+19].
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3. Fault Injection Approach for
Satellite On-Board Image
Processing

To recapitulate: The goal of our work is to develop an FI approach for satellite
on-board image processing. With that we want to determine the robustness of
the FGS algorithm while using the test approach of [WGH20b]. For this pur-
pose, we choose FI and observe the behavior under controlled error influence.

Our approach is sketched in Fig. 3.1 and builds on the testing procedure
of Fig. 2.3. For clarity reasons, the imagette generation is explicitly shown. In
order to make an injection, we need to gather relevant fault classes and how
they can be modeled. For a fault that is already part of PlatoSim, the corre-
sponding configuration must be passed automatically. The strength of a fault
is defined in the error variances. For a fault not implemented in PlatoSim, its
injection must be done directly into the output imagettes. This is represented
by the two arrows pointing from the fault injection. Our task is to integrate
and automate the fault injection into the imagette generation process.

In Section 3.1, we present the studied literature from which the errors were
taken and or used to justify their application relevance and importance. Next,
we introduce the selection of the analyzed fault classes, give their modeling,
and outline their implementation in Section 3.2. In Section 3.3, we describe the
automation approach employed and its implementation. Finally, in Chapter 4,
we evaluate the impact of the fault classes on the test’s fault capability.

3.1. Satellite Image Faults: a Literature Review

For selection of fault classes, we did a systematic literature review. For the
selection of fault classes, we did a systematic literature review. The procedure
was to search for literature that is preferably up-to-date and/or comprehensive.
We included sources that focus in detail on individual types of image processing
errors. In addition, we also looked for faults that are unique to the aerospace
context. With their reference to the CCD sensor architecture, we ensure that
the image-related problems are also applicable to our case study.

Mainly, we refer to the two most comprehensive sources. One is a theoretical-
experimental paper published by the well-known Jet Propulsion Laboratory
(JPL) and California Institute of Technology (Caltech). They have analyzed
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3.2. Selected Fault Classes

the effects of several types of faults on star trackers and have summarized
their theoretical and experimental efforts in the development of environmen-
tally robust imagers for star tracker. Identical to the FGS, they fitted a two-
dimensional Gaussian to determine the stellar center, but using a 5 px × 5 px
imagette instead of 6 px × 6 px. They have modeled errors, such as photore-
sponse non-uniformity and photon shot noise, mathematically and then, in
contrast to our work, analytically determined standard deviations depending
on the integration time tint [Han+01].

The other main source is a dissertation on image processing robustness writ-
ten at the Polytechnic University of Turin (POLITO). The main focus of their
work lies on techniques for implementing efficient and robust real-time embed-
ded image processing hardware accelerators. In Section 2.3 (Imaging sensors
and related issues) the sensor architectures CMOS and CCD are described and
thus fault classes are motivated. These include de-focus blur, dark current, and
others [Tro16].

Further sources are presented and discussed in the corresponding sections.
In general, it should be noted that the behavior of CMOS cameras can also
be applied to CCD, since their structure is quite similar. In the majority of
publications about CMOS sensors this is especially mentioned.

3.2. Selected Fault Classes

In the following subsections, we present our fault classes. In each case, we
answer the following questions:

1. How do they arise?

2. Why could they be relevant?

3. How do we model them?

4. Are they already included in PlatoSim?

Before we discuss the fault classes, we lay out how noise effects can be modeled
in general.

As defined in [Han+01, Sec. 2.3], we assume that the measured signal U(i, j)
is composed of two components, namely the “real” signal Iij and a error term
εij, where i and j are the discrete coordinates of a corresponding pixel for an
image.

U(i, j) = Iij + εij (3.1)

Obviously, for an exposure we will never be able to distinguish these two com-
ponents, however, in a simulation it helps to model them independently. For
all our fault classes we just need to justify what εij looks like.

For PlatoSim, the modeling is referenced by and further specified in [Rei18].

11



3. Fault Injection Approach for Satellite On-Board Image Processing

3.2.1. Readout Noise

Readout noise is the simplest class and arises from the read electronics’ noise
(in general called Front-End Electronics, FEE). It is assumed to be equally
distributed in time and uncorrelated, since each pixel is read out separately.
As the background is subtracted, its mean is zero. The larger the exposure
time, the smaller the readout noise in relation to the real signal. However we
are working with a fixed exposure time. Considering that each pixel is affected
in a random manner, we want to check the impairment of the test approach.

PlatoSim models this with a normal distribution N around mean 0 where
for every pixel a sample is taken.

εij = N (0, σRN) (3.2)

The parameter σRN is the variance of the readout noise [Han+01; Tro16].

3.2.2. Hot/Dead Pixels

From overheating or cosmic radiation like neutrons, hot and dead pixels can
arise. Also a plain defect in the image sensor can result in such fault. Hot pixels
are pixels which have an illumination independent component that increases
their output. This can result in a pixel value near or as high as full saturation.
The exposure of the dead pixel deviates in the opposite direction, resulting in
a pixel output that is well below the average exposure of the sensor.

Both faults are relevant in this case, because a hot pixel might be brighter
than the observed star. Also a dead pixel distorts the stars illumination, espe-
cially when it strikes the bright center of the star. We expect the two cases to
cause a differing centroid.

This fault is missing from PlatoSim. For this fault, the pixel at (k, l) is set
to a given intensity IHDP. This intensity should be chosen at the limits of the
dynamic range [Cha+15; Wan+12].

εij =

{
IHDP − Iij if (i, j) = (k, l)

0 otherwise
(3.3)

3.2.3. De-Focus Blur

Perhaps the most recognizable fault is de-focus blur. This results when the
focal plane and the image sensor do not match in position. The light diverges
and a blurred image appears. Even if a pure blur should not affect the centroid
position, there could be unknown effects.

The error term of the effect is the difference the PSF function causes com-
pared to before the mapping

εij = PSF (Iij)− Iij. (3.4)

PlatoSim simulates the optics. Therefore, a PSF can be selected to map the
de-focus as desired [Tro16].

12
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3.2.4. Brighter-Fatter Effect (BFE)

For the same star time the observed shape changes at a longer exposure. The
common assumption is that each pixel functions independently. However, re-
ality shows that with higher luminosity, the covariance between neighboring
pixels increases. This effect arises from the electric fields emanating from the
charges collected in the CCD. The longer a pixel is illuminated, the more re-
pulsive it is to further intensity, which is then more likely to be picked up by
neighbors [Cou+18]. This error is particularly relevant because the shape of
the star is distorted in a non-trivial way. Consequently, this is transferred to
the centroid and its position.

For the implementation, the authors of PlatoSim use the pertubated change
in the pixel through the model proposed by [Guy+15, Eq. (11)]. The change
is influenced by all directly neighboring pixels X as [Rei18]

εij =
1

4

∑
X

∑
k,l

aXkl · Ikl · (Iij + IX) . (3.5)

The second sum repeatedly covers a window of adjacent pixels (k, l). For
computability reasons they are included only up to a fixed distance R ≤
d
(
(i, j), (k, l)

)
. With increasing distance the contributed terms shrink and can

therefore be neglected. The coefficients aXkl can be determined from the physical
problem. For further reading we recommend both [Cou+18; Guy+15].

3.2.5. Dark Current

Inherently, the CCD has an electric field in order to function. This field is
present even when there is no external signal. Due to this influence, a fixed
pattern noise is generated. Another name for this is thermal noise, because
heat is induced by the electric field. A crucial difference to the readout noise is
that the expected value is not zero. This could further influence the Gaussian
fit for the centroid.

Because this is a fixed pattern noise a dark signal is sampled by PlatoSim’s
authors as

Iij, dark = N (µ = nDS · t, σ = nDS · t · fDSNU) ,

where t is the exposure time and nDS the dark signal rate. From this, the error
term originates with

εij = N
(
µ = Iij, dark , σ =

√
Iij, dark

)
. (3.6)

The central parameter here, in addition to the dark signal rate nDS, is the
deviation fDSNU ∈ [0, 1] ⊂ R [Han+01; Tro16]. PlatoSim implements it exactly
this way.

13



3. Fault Injection Approach for Satellite On-Board Image Processing

3.2.6. Galactic Cosmic Ray (GCR)

Cosmics are the event where radiation penetrates the image sensor and deposits
energy along the particle’s path. Energy can be in the form of electrons, which
are counted in the CCD. This behavior is exhibited by cosmic protons and
helium ions. These events are possible over a wide energy spectrum, so on
the CCD a GCR might be brighter than a star [Bru+15]. We assume that an
intense GCR near a star can impair the centroid determination.

PlatoSim includes GCRs, but distributes them across the whole CCD im-
ager. For us it is relevant that we can decide whether a GCR should be in an
imagette or not. Therefore, we implement this fault ourselves, but described
as in PlatoSim [Mar+14]. In addition, we extend the functionality with a pa-
rameter that determines whether a GCR must hit through the center of the
image or not.

A GCR is characterized by the sub-pixel entry point ~x ∈ R2, entry angle
α ∈ [0, 2π[, trail length l ∈ R+, and intensity IGCR ∈ R+. They will all be
sampled from uniform distributions over their possible values. ~x must be in
the imagette and for the length and intensity PlatoSim’s intervals are adapted.
With the decay function

f(t) = exp

( −t2
2 · σ2

)
,

the intensity is distributed over the trail, with t ∈ ]0, l] and a normalization
factor σ.

With this information, a line L is drawn by discretizing it into trace points
which distribute a corresponding proportion of the intensity to the respective
pixel on which they fall. This is added to the intensity, so this yields

εij = L(~x, α, l, IGCR). (3.7)

3.3. Implementation with PLATO Simulator

We give a general description of the implementation. To automate the fault in-
jection process, we chose to encapsulate the imagette generation. The test case
generation is excluded. Instead, we start directly with a given test suite and
the simulation settings. Figure 3.2 shows the fault injection process. We start
directly with a star catalog and a simulation setting. The star catalog contains
several stars that represent the test cases of a given test suite. There is one
class per fault, inheriting either PlatoSim-Fault or External-Fault type. The
fault settings can be used to specify which errors are injected and with which
parameters they are called. Since PlatoSim is a separate program, PlatoSim-
Faults can occur only once in the fault settings, but external ones can occur
as often as desired.
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Figure 3.2.: Overview of the injection workflow.

The injection happens in two steps. In the first, a run setting is created for
each star by taking the simulation settings into account and making appro-
priate settings per PlatoSim type fault. PlatoSim generates imagettes for each
run setting, which in turn contains faults. The external injection then modifies
the imagettes so that each desired external fault is also covered. Finally, the
centoid calculation can be called to evaluate the star positions using the FGS.

Our fault injection code can be executed via a command line interface, with
call parameters for application settings. PlatoSim is written in C++, but has
a Python interface, so we chose to write the code in Python 3. We developed
the fault injection in an internal GitLab repository of the DLR, so the code is
not public.

Example fault classes

For a general overview, we show how faults inheriting from the two fault class
types can look like.

Faults that are already implemented in PlatoSim need to inherit from Base c
FaultPlatosim and have a class parameter named classParameters. This
dict has to contain one entry per fault parameter. Each is later called by its
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3. Fault Injection Approach for Satellite On-Board Image Processing

key (e.g., 'CCDIncludeReadoutNoise') and the value (dict) is always built
the same way. The 'type' attribute specifies the parameter type and must be
understood by Python as a type. Before the injection, it is checked if the passed
variable is of the type. 'platosimPath' points to the corresponding PlatoSim
configuration parameter. 'assert' has to be a lambda function that represents
an assertion for the parameter. The assertion must always evaluate to a bool

so that the program can check if the passed value is allowed before calling
PlatoSim.

1 class ReadNoise(BaseFaultPlatosim):

2 """

3 Readout noise due to imperfect amplifiers and ADC electronics.

4 The measurement is on average correct, but deviated with a fixed

5 variance. CCD and FEE (front end electronics) term are added in

6 quadrature.

7 """

8

9 classParameters = { # bool to turn CCD readout noise on of off

10 'CCDIncludeReadoutNoise': {

11 'type': bool,

12 'platosimPath': "CCD/IncludeReadoutNoise",

13 'assert': (lambda b: True) # type check in class

14 },

15 'CCDMeanReadoutNoise': { # float for CCD readout noise mean

16 'type': float,

17 'platosimPath': "CCD/ReadoutNoise",

18 'assert': (lambda rn: rn >= 0)

19 },

20 'FEEMeanReadoutNoise': { # float for FEE readout noise mean

21 'type': float,

22 'platosimPath': "FEE/ReadoutNoise",

23 'assert': (lambda rn: rn >= 0)

24 }

25 }

External faults inherit from BaseFaultExternal and their classParameters
is defined the same way, except without the 'platosimPath' attribute. Impor-
tant to notice is the fault_field() method. For each image, this function is
called so that an individual fault can be generated for each imagette. It has to
return an edge_length × edge_length matrix (numpy.ndarray) containing
the fault. First, the class constructor (__init__()) is overridden and passed
an argument describing the faults injection behavior. 'additive' will add the
field to the images, 'multiplicative' will multiply them and 'absolute'

will assign our field masked by mask (also returned by fault_field()) to
the image. The parameters for a class instance can be accessed as seen in line
26.
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3.3. Implementation with PLATO Simulator

1 class GalacticCosmicRay(BaseFaultExternal):

2 """

3 Cosmic rays leave trails in CCD imagers. This class generates

4 intensity that will be added to the imagettes. HitCenter

5 specifies whether the trail goes through the imagette center.

6 """

7

8 def __init__(self, *args, **kwargs):

9 super(GalacticCosmicRay,

10 self).__init__('additive', *args, **kwargs)

11

12 classParameters = {

13 'TrailLength': {

14 # Interval for the allowed length of the cosmic trails,

15 'type': list, # expressed in pixels.

16 'assert': (lambda l: len(l) == 2 and type(l[0]) == float

17 and type(l[1]) == float and

18 0 <= l[0] < l[1])

19 }, # ...

20 }

21

22 def fault_field(self, edge_length):

23 """Return cosmic ray of class 'through center' or not."""

24

25 field = np.zeros((edge_length, edge_length), dtype='<u2')

26 trail_length =

self.configParameters['TrailLength']['setTo']['Variable']↪→

27 # ... some code constructing a GCR

28 return field
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4. Evaluation: Robustness and
Accuracy

With the implemented approach we evaluate the robustness of the FGS and
analyze how well the testing approach presented in [WGH20b] performs. To
observe the robustness of the FGS in terms of accuracy and precision, we study
the performance of the FGS’s centroid determination under different settings.
For this, we use equivalence class based tests along with our error injection
approach.

To visualize the results of the FGS, we plot the Accuracy and Precision
in the following sections. Accuracy is given as residual position error ∆d and
precision as its standard deviation SD(∆d). If the FGS is robust under the
influence of faults, accuracy and precision should remain as low as possible. As
long as both indicators do not grow with increasing error expression, the FGS
is also robust against it. If, on the other hand, we experience large ∆d under
a fault, the FGS is not robust against it.

4.1. Simulation Configuration

One of our goals was to confirm the effectiveness of the equivalence classes. For
the coverage criterion, different coverages of the given test suites are calculated
and compared via the automated evaluation. For the systematic analysis of the
fault classes, we select a characteristic parameter for each class, e.g. readout
noise variance. We change this parameter and execute the automated testing
approach repeatedly.

We proceed by picking a characteristic parameter for each fault and scaling
it. That is, we take the default PlatoSim setting and multiply the considered
parameter by 0, 20, 21, 22, · · · . For each step we simulate imagettes with injected
faults for test suites with coverages of 100 %, 90 %, 75 %, and 50 % (with respect
to the coverage criterion presented in [WGH20b]). Our imagettes have a size of
6 px×6 px. All test suites have only one representative test case per equivalence
class combination. Therefore, the 50 % test suite has half as many test cases
as the 100 % test suite. The reduced test suites contain representatives for
randomly selected equivalence class combinations, but are independent of each
other. The reduced test suites have randomly selected representatives, but are
independent of the other test suites. From each simulation, we obtain the
residual of the position per star. That is, the difference between expected
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4. Evaluation: Robustness and Accuracy

position on the CCD sensor and that of the determined centroid. For greater
significance, the residual per star is averaged over 1000 exposures. Per fault,
the simulation for the four test suites takes between a half to a day. This uses
a 64-bit Linux machine with 62 GiB of memory and ten cores of the Intel(R)
Xeon(R) Gold 6126 CPU @ 2.60 GHz in parallel.

To detect outliers, the median absolute deviation (MAD) criterion is applied
per configuration. For every star the distance to the median is computed,
called Z-score. We classify as outliers the stars with a Z-score larger than 3.5,
as proposed by Iglewicz and Hoaglin [IH93]. This criterion is stronger than a
deviation from the arithmetic mean, since a few outliers strongly distort the
mean if their residual is in larger orders of magnitude. For the implementation,
we refer to [Kin14]. This criterion is applied to individual configurations in each
case, since these provoke different FGS behaviors. Thus, for a case at 100 %,
the threshold may be different from that at 90 %. However, this is taken into
account in the comparison.

4.2. Evaluation of Fault Effects

To analyze the behaviors, we present the data in several ways. For the first
fault type readout noise, we introduce our evaluation approach of the data
representation and then use it on the following ones as well.

Readout Noise

As described in Section 3.2, there is a noise component due to the CCD itself
and a noise component due to the FEE, which are summed in quadrature.
Since for PLATO the CCD component is fixed at 44 e−/pixel1 and is difficult
to optimize, only the FEE component is scaled. By default, the FEE component
is at 200 e−/pixel, and we scale it with M(σRN).

For readout noise, the data, without outliers, is plotted as boxplots in
Fig. 4.1a. Along the abscissa the multipliers of the noise variance M(σRN)
are shown, which increases cubically. On the ordinate, the average residual per
star ∆d is plotted in pixels. For each factor M(σRN) and coverage there is a
boxplot.

With the first look at Fig. 4.1a no M(σRN) correlation becomes clear, only
that the test suites are not completely alike. Even the data points outside of
the whiskers keep their structure. Median and arithmetic average lie around
0.175 px. Expected was a performance degradation with increasing M(σRN),
but even with 24 · 200 e−/pixel = 3200 e−/pixel, the centroid algorithm seems
to work the same as without FEE noise. This speaks in favor of the position
determination using the Gaussian method of the centroid algorithm. The FGS
is robust to readout noise for the M(σRN) considered.

1e−: Charge of the electron.
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4.2. Evaluation of Fault Effects
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Figure 4.1.: Boxplots and outlier fractions for the readout noise fault.

We note that even with the largest noise here, the intensity of the stellar
center in the imagette is still two orders of magnitude larger than the noise
variance. A higher M(σRN) was not configurable in PlatoSim, though such
high FEE noise is not realistic either. With larger M(σRN), an increase of δd
should occur, thus the FGS should become less accurate.

The outliers, while undesirable for the main case, are just as important for
the global analysis. We count the outliers detected via the MAD criterion and
divide the number by the size of the respective test suite. This gives us the ratio
of outliers, denoted outlier fraction. Plotted against coverage and readout noise
variance factor M(σRN) this is shown in Fig. 4.1b. From M(σRN) ∈ [0, 4] there
are almost no outliers, at M(σRN) = 8 outliers increase to more than 0.4 %
for all coverages, and at 16 to more than 1.4 %. This indicates a decreasing
performance with increasing M(σRN), as anticipated. Contrary to intuition, the
outlier fraction is largest at 50 %. However, since we have a single sample of
test suites, we can only state that the outlier fraction of all test suites behaves
similarly with increasing M(σRN).

For comparison of the equivalence classes, we report the residual position
error ∆d per equivalence dimension in Fig. 4.2. Solely the simulation with
most impaired ∆d, where M(σRN) = 16, is considered. ∆d is summarized in
the arithmetic average with the inter-star standard deviation. This value looks
at the accuracy per test case (already averaged over 1000 exposures) and indi-
cates how much the test cases vary. Stars that regularly show critical behavior
increase this deviation. The colors encode the four test suite coverages. Left-
most, in the inner circle, in the radius class, the best performance is found for
a radius of 0 px to 2353 px.

The next larger radius class produces the largest deviation ∆d on average.
Due to the distance to the optical axis, the optics generate an abberation,
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Figure 4.2.: Class-wise performance of different test suite coverages measured by
the centroids residual error, for the readout noise variance factor
M(σRN) = 16.

which could lead to inaccuracies. The further radii have lower nominal values,
but also increasing standard deviation. Thus, the unpredictability of the outer
classes becomes clear. The behavior of the radius is not an inherent property
of the readout noise and is also observable for the further faults.

As a final point, for this class, we see that the variance of the test suites
is larger with higher coverage. The 50 % test suite is always enclosed by the
others with one exception. This suggests that test suites with greater coverage
provoke a wider range of behavior.

Angular class, top right in Fig. 4.2, exhibits wiggle, but all expected values
overlap with the standard deviations of the rest. Readout noise does not pro-
duce radial dependence, as we expected. The same is true for the magnitude
class. The smaller the apparent magnitude m, the brighter a star appears and
the more intense it is seen in the imagette. Since the noise has not reached a
significant level, all magnitudes represented here are equally unaffected.

The results for the sub-pixel classes are similarly distributed between the
different test suite coverages. Stars that lie in the center of a pixel have the
least deviation on average. Horizontal and vertical pixel sides show a larger
and very similar deviation. Stars in the corner of a pixel show the poorest per-
formance. This tendency of pixel classes is also common and we will encounter
it repeatedly.

The final method of visualization is similar to the previous one. Only differ-
ence is that we consider the results from the test suite with 100 % coverage,
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Figure 4.3.: Class-wise performance of various scaled readout noise variance
factors M(σRN) for a test suite coverage of 100 %.

while we distinguish between the considered parameters M(σRN). At the cur-
rent fault (Fig. 4.3), this approach does not yet give us any special insight.
Analogous to the boxplots for this fault (Fig. 4.1a), the dynamic range of
M(σRN) shows no differences within the classes. Therefore, the FGS is robust
even across classes for readout noise.

For an additional level of confidence, we not only look at the accuracy, but
also at the precision. In other words, we have drawn all four previous data
representations one more time, but this time using the intra-star standard
deviation. Which shows us how precisely the FGS determines star positions.
A restricted standard deviation is an important quality specification for fine
guidance systems in general. In order to not clutter this section, these plots are
outsourced to Appendix A and are mentioned intermittently when considered
relevant. However, we do not provide a complete, separate analysis of the
precision of the FGS in this thesis.

For readout noise, the accuracy in Fig. A.1 increases steadily, even for sta-
ble accuracy. It is also noticeable that the precision decreases with increasing
magnitude and dimmer stars, as Fig. A.2 shows. There we also see that the
sub-pixel classes behave inversely to the nominal value. In the center class,
where the nominal value shows the smallest deviation, the standard deviation
is the largest. In the corner of a pixel, we see the smallest standard deviation
SD(∆d). The coverages and outlier fractions do not behave differently from
the nominal values.
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(a) Boxplots for the centroids residual error dependent
on the imagette region with hot pixel R. The
four colors represent different test suite coverages.
Here, ∆d is plotted on a logarithmic scale.
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Figure 4.4.: Boxplots and outlier fractions for the hot pixel.

Hot/Dead Pixel

For this fault class, a distinction is made between hot and dead pixel. For both,
a single pixel is modified. The parameterization is not done by a continuous
factor, but by the position of occurrence. The imagette is divided in such away
that (i, j) is in one of the 4 regions: center, horizontal edge, vertical edge and
corner. It is partitioned so that one side is divided into three equal parts, if
possible. If the edge length cannot be divided by an integer of 3, the middle
part is enlarged.

First we consider a hot pixel with 80 % intensity, which according to [Cha+15]
can occur for a hot pixel. In Fig. 4.4a we start with boxplots for hot pixel. All
regions cause unacceptable results for the FGS, because only a few cases are
below a deviation of 1px. The FGS is not robust against a hot pixel of this
intensity, even in the center where the star is located. This is true except for a
few cases in the center, where the hot pixel may have fallen exactly on the cen-
ter of the star. There are some differences between the coverages. While they
are similar per region, they do not have a clear trend in terms of coverage.
One would like to have complete test suites so that one covers all relevant test
cases. However, here we see that the 100 % test suite does not always cover
most borderline cases, since otherwise its box would always have to span all
others. From this we conclude that chance is involved in taking the test suites.
The representative test case for a equivalence class does not always produce
exactly the same behavior as all other possible test cases for that equivalence
class.

Figure 4.4b again shows outliers. All outlier fractions are between 28 % to
40 % and show a similar structure over the different test suite coverages, where
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4.2. Evaluation of Fault Effects
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Figure 4.5.: Class-wise performance of different test suite coverages measured by
the centroids residual error, for all imagette region with hot pixel
R.

center and corner are consistently larger than the two edge regions. It is better
to take a test suite with complete coverage, because, in absolute numbers,
this involves more outliers. Center and corner are more affected by outliers
according to MAD criterion, but if one would count the values of ∆d > 2 px,
the edge regions would bring higher ratios. This can be seen in Fig. 4.4a, since
for the regions the boxes begin above ∆d > 2 px, but the one from the center
does not. However, since the FGS is not robust in case of hot pixels already in
the first place, the statement of the outlier fraction is not as crucial as for the
readout noise (Fig. 4.1b).

The equivalence class comparison per test suite in Fig. 4.5 generally has a
higher nominal deviation ∆d. This time, all regions are included in the plot,
instead of just one, since we do not have a most impaired fault. The equivalence
class dependence of the radius and sub-pixel class is no longer present and the
brightness class shows larger deviations for brighter stars with a magnitude
smaller than 6 m. The magnitude of a star does not affect the extent on the
CCD, so the increasing deviation cannot be explained by this, but should come
from the centroid algorithm in the FGS. The results of the test suite with 50 %
coverage here encloses all others, suggesting that more edge cases were found
in it. This supports the statement that the representative test cases do not
always produce exactly the same effect as the rest of the test cases of their
equivalence class. Otherwise, the results of the test suite with 100 % coverage
would have to enclose the others. But the fact that for the hot pixel the FGS is

25



4. Evaluation: Robustness and Accuracy

0 2353 3328 4076 4705
Radius (px)

100

0

100

200

300

400

500

600

Radius class

0 45 90 135 180 225 270 315 360
Polar angle (°)

Polar angle class
Region

Cent
Horiz
Vert
Cor

7.0006.5626.2516.0095.8125.6455.500
Magnitude (m)

100

0

100

200

300

400

500

600

Magnitude class

Center Horizontal Vertical Corner
Sub-Pixel Class

Sub-Pixel class

Re
sid

ua
l p

os
iti

on
 e

rro
r 

d 
(p

x)

Figure 4.6.: Class-wise performance of various imagette region with hot pixel
R for a test suite coverage of 100 %.

not robust anyway reduces the significance of the larger variance of the results
from the test suite with 50 % coverage.

Figure 4.6 repeats the missing dependencies of the equivalence classes. The
larger variance of the horizontally and vertically regions corresponds to the
boxplots in Fig. 4.4a.

For the dead pixel with 20 % of background intensity, the boxplots result in
Fig. 4.7a. According to [Wan+12], a dead pixel is described as a pixel with less
than 40 % of mean intensity. In the center, the dead pixel brings an even larger
deviation than all of the hot pixel. In this case, intensity is missing where
it should be and this throws the positioning out of balance. The remaining
classes, however, work acceptably. On average they have a deviation of 0.2 px,
which is similar to the FGS’ performance without faults. Except for dead pixels
in the center, the FGS is robust. Figure A.7a depicts that the the precision of
the FGS is lower if the dead pixel is positioned in the center region than if it
is in one of the edge regions.

Figure 4.7b shows us that despite the generally bad behavior if the dead
pixel is in the center region, there are still more than 30 % outliers with even
larger residual error. For the edge regions the outlier fraction remains below
20 %. The robustness is attacked here, even if the general case with a deviation
of about 0.2 px performs on average within the specifications. For the corner
region there are no outliers at all, which means the FGS is completely robust
to a dead pixel there. In the horizontal and vertical edge sector as well as in the
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(a) Boxplots for the centroids residual error depen-
dent on the imagette region with dead pixel
R. The four colors represent different test suite
coverages. Here, ∆d is plotted on a logarithmic
scale.
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Figure 4.7.: Boxplots and outlier fractions for the dead pixel.

corner sector the pixels usually have low intensity, so in most cases the FGS
still seems to work when this low intensity in these regions is further reduced.

For Figure 4.8, all regions R are included for the equivalence class compari-
son. However, the center region determines the behavior in this case, since its
large deviation in the arithmetic mean is most influential. For all four subplots,
no equivalence class dependence can be seen. However, it is striking that the
test suite with 50 % coverage produces the smallest variance, closely followed
by the test suite with 75 %. Test suite with 90 % and 100 % coverage share the
largest standard deviation, which most often is twice as large, and thus cover
more critical test cases than the test suites with lower coverage. This speaks
strongly to the advantage of a complete test test suite.

When comparing the residual position error ∆d per imagette region in
Fig. 4.9, the scaling of the deviation is adjusted in order to examine the be-
havior of the three robust cases. The diagram shows in the background in dark
blue only the standard deviation bars of the results for the center region. The
results for the center region of the radius, angle, and sub-pixel classes behave
similarly to the case without faults. In the magnitude class, the faults of the
edge regions cause a slightly increasing deviation to larger magnitudes. Since
the stars are fainter, the effect of the dead pixel could be proportionally larger.

De-Focus Blur

In order to create a de-focus blur, the optical mapping is parameterized in
PlatoSim. To simulate a realistic optic, PlatoSim provides an interchangeable
optical model. For a de-focus we exchange the optics with those where the focal
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Figure 4.8.: Class-wise performance of different test suite coverages measured by
the centroids residual error, for all imagette region with dead pixel
R.
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Figure 4.9.: Class-wise performance of various imagette region with dead pixel
R for a test suite coverage of 100 %.
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(a) Boxplots for the centroids residual error dependent on the focal dis-
tance ∆f (for blue light). The four colors represent different test
suite coverages.
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the focal distance ∆f (for blue light).

Figure 4.10.: Boxplots and outlier fractions for de-focus blur with blue light.

length has an offset ∆f . This way blur can be generated in different degrees.
For the simulation, we have optical models for blue and red light at a light
temperature of 6000 K.

We start with blue light and its boxplots in Fig. 4.10a. As the focal length
difference increases, the position deviation ∆d also increases. However, ∆d is
not symmetric around 0 µm. On the one hand, ∆d increases more for positive
focal length differences ∆f , and the boxplots in the negative direction grow
mainly in variance. On the other hand, for this sample, the minimum deviation
is on average at −20 µm. The minimum intra-star standard deviation, and thus
the highest precision, is even at −60 µm (Fig. A.10a). This indicates a miscali-
bration, since the lowest variance should be at 0 µm. The FGS depends on ∆f
and is not robust to deviations. This results from misaligned optics imaging
the star somewhere else and possibly in a different shape on the CCD. This
can also be seen in Fig. A.10a, as the precision always stays within acceptable
limits for larger ∆f . This means that the stellar center is accurately detected
by the FGS, but is located elsewhere.

Outliers occur at a low level of less than 0.6 %, as shown by Fig. 4.10b. The
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Figure 4.11.: Class-wise performance of different test suite coverages measured by
the centroids residual error, for the focal distance ∆f = −100 µm
(for blue light).

defocused optics with |∆d| ≥ 80 µm seem to suppress these, rather than am-
plify them. Figure A.10b, on the other hand, has outliers distributed through-
out at roughly the same levels.

Figure 4.11 shows the equivalence class comparison among the test suites
with different coverages at fixed focal distance ∆f . For this extreme case at
−100 µm, the radial dependence is amplified. The two inner radius classes
show the least deviation ∆d and the outermost is affected the strongest. As
for the magnitude class, it does not show any dependence, and neither does
the sub-pixel class anymore. The latter may come from the fact that with the
defocused optics the classes are dispersed. That is, stars that were previously
part of a sub-pixel class appear in another region. The polar angle class shows
various effects. The results of the polar classes with angles neighboring 225°
have the largest deviation, those neighboring 45° the smallest. In between, the
deviations are distributed continuously up and down. We will not investigate
the reason for this further, but it must lie in the optics. What we cannot
discover here, however, is a trend among the coverages, because they remain
very similar.

In addition to the previous plot, we see the effect of the focal distance ∆f
everywhere in Fig. 4.12. The radius class shows that only for negative ∆f
the deviation increases with larger radius. With positive ∆f the residual error
looks similar to that of the readout noise, but with a larger deviation.

To check if the off-center position of the minimal error ∆d is due to the
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4.2. Evaluation of Fault Effects
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Figure 4.12.: Class-wise performance of various focal distances ∆f for a test
suite coverage of 100 % (for blue light).

wavelength of the light, we simulated the same effect as before, with the optics
for red instead of blue light. However, as Fig. 4.13a shows, the minimum here
is also at −20 µm (for precision at −40 µm, Fig. A.13a). This further points
to a miscalibration of the optics. Difference to the blue light here is that the
boxplots in positive ∆f have a slightly wider distribution and those in the
negative direction a smaller one. Regarding the mean values, the optics for
blue and red light are similar. The boxes and medians of the different test
suite coverages are in close proximity, so no superiority of one coverage over
the other can be inferred.

The red light produces more than ten times the number of outliers in the
maximum compared to the blue light, as Fig. 4.13b reveals. In over 96 % of the
combinations there is at least one outlier. But especially in −60 µm, −80 µm,
and −100 µm outliers are provoked. In this case, most notably for results with
test suite of 100 % coverage. We did not investigate further what exactly causes
the outliers, as the analysis of the optics is too complicated for the scope of this
thesis. One difference from the results using the blue light is that the results
using the red light have a broader spectrum of wavelengths, so optics may have
a greater influence.

In comparison to blue light, Fig. 4.14 shows the same radial dependence,
but the results for test cases in polar angle classes are distributed differently.
The results per polar angular class vary among each other and several maxima
and minima can be seen.
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(a) Boxplots for the centroids residual error dependent on the focal dis-
tance ∆f (for red light). The four colors represent different test suite
coverages.
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Figure 4.13.: Boxplots and outlier fractions for de-focus blur with red light.
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Figure 4.14.: Class-wise performance of different test suite coverages measured by
the centroids residual error, for the focal distance ∆f = −100 µm
(for red light).

0 2353 3328 4076 4705
Radius (px)

0.0

0.2

0.4

0.6

0.8

Radius class

0 45 90 135 180 225 270 315 360
Polar angle (°)

Polar angle class
Focal distance

f ( m)

-100
-80
-60
-40
-20
-10
0
10
20
40
60
80
100

7.0006.5626.2516.0095.8125.6455.500
Magnitude (m)

0.0

0.2

0.4

0.6

0.8

Magnitude class

Center Horizontal Vertical Corner
Sub-Pixel Class

Sub-Pixel class

Re
sid

ua
l p

os
iti

on
 e

rro
r 

d 
(p

x)

Figure 4.15.: Class-wise performance of various focal distances ∆f for a test
suite coverage of 100 % (for red light).
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Figure 4.16.: Boxplots and outlier fractions for the BFE.

Figure 4.15 only underlines the statements about Fig. 4.12.

Brighter-Fatter Effect

The parameterization for this fault class is not defined by the extent of the
fault, but whether the fault is present or deactivated. It might bring insight to
parameterize this effect, but we do not realize it in the context of this bachelor
thesis. However, it would be possible to amplify the fault via the coefficients
of the fault model.

The boxplots in Fig. 4.16a look almost identical. The BFE does not affect
the FGS in the extent given in PlatoSim, so it is robust.

The outliers in Fig. 4.16b seem identicaland the outlier fraction is not af-
fected by the BFE in our sample. The test suite with 50 % coverage having
the only outliers shows that there is too few statistical evidence to make firm
statements about the coverages, except that even with 100 % coverage, there
is still chance involved in obtaining the relevant test cases.

The class comparison of coverages in Fig. 4.17 looks identical to that of
readout noise (Fig. 4.2) and does not yield any further insights either. Same
holds for the comparison of the parameterization in Fig. 4.18, where the data
of the simulations with BFE overlap with those without BFE.

Dark Current

The dark current fault class is modeled differently in theory than the readout
noise, but it is similar to it in that it is a noise sampled from a normal distri-
bution and in practice it leads to a similar effect. For this purpose, the dark
current was scaled by the nominal value of the dark signal.
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Figure 4.17.: Class-wise performance of different test suite coverages measured by
the centroids residual error, for the active Brighter-Fatter Effect.
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Figure 4.18.: Class-wise performance of active/inactive Brighter-Fatter Effect
for a test suite coverage of 100 %.
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(a) Boxplots for the centroids residual error de-
pendent on the scaled dark current factor
M(σDC). The four colors represent different
test suite coverages.
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Figure 4.19.: Boxplots and outlier fractions for the dark signal fault.

The boxplots in Fig. 4.19a are also similar to the readout noise, which show
no degradation during increasing dark current factor M(σDC). So the FGS is
also robust against dark signal of up to 256 times. Unlike the readout noise,
even the precision is robust in Fig. A.19a, only indicating an increasing devia-
tion at 256. Furthermore, the outliers in Fig. A.19b are stable. Different to the
readout noise here is that the outliers (Fig. 4.19b) in the considered M(σDC)
show no change at the higher M(σDC). All M(σDC) produce the same outlier
fraction.

When comparing equivalence classes on coverages in Fig. 4.20 and when
comparing on the M(σDC) in Fig. 4.21 the same observation can be made as
for the readout noise.

Galactic Cosmic Ray

The final fault class that we consider in this thesis is the GCR. For the pa-
rameters of this class we refer to standard settings of PlatoSim. Trail length
is between 3 px to 9 px, since a shorter one is similar to the hot pixel and the
longest one that fits our imagettes is

√
2 · 6 px < 9 px long. We distinguish

between GCRs that pass through the center region of the imagette and those
that explicitly do not pass through it.

Figure 4.22a shows that the median with a GCR through the imagette center
region region strongly resembles the median without a GCR. Figure 4.22b
depicts, however, that this always produces outliers greater than 6 %. So the
FGS can be fortunate with a GCR, or fall victim to the outlier. GCRs that
do not pass through the center region have a slightly larger impact. Median
and mean are slightly higher, but most importantly we always have more than
13.5 % outliers.
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Figure 4.20.: Class-wise performance of different test suite coverages measured by
the centroids residual error, for the dark current factor M(σDC) =
256.
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Figure 4.21.: Class-wise performance of various scaled dark current factor
M(σDC) for a test suite coverage of 100 %.
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(a) Boxplots for the centroids residual error
dependent on galactic cosmic rays
hitting / not hitting the imagette center
region. The four colors represent differ-
ent test suite coverages.
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Figure 4.22.: Boxplots and outlier fractions for the GCR.
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Figure 4.23.: Class-wise performance of different test suite coverages measured by
the centroids residual error, for the galactic cosmic ray hitting the
imagette center region.
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Figure 4.24.: Class-wise performance of galactic cosmic rays hitting / not hit-
ting the imagette center region, for a test suite coverage of 100 %.

The comparison of test suites with different coverages Fig. 4.23 is not a gain
of knowledge about the different test suites. Instead, it supports the previous
evaluation.

It is evident from the comparison between the GCR types in Fig. 4.24 that
for each equivalence class, the FGS produces a higher residual position error
∆d from the GCR that does not pass through the center region. At the same
time, Fig. A.24 shows that the precision of the FGS is worse when the GCR
passes through the center region. This could be due to the altered star shape.

With this approach, we identified very robust faults, partially robust faults
and faults that are not robust. The FGS is robust against readout noise even
with a 16 fold magnitude, considering the accuracy, although the precision
degrades by a factor of almost ten. Hot pixels at any position in a 6 × 6
imagette will always cause the FGS to malfunction. For dead pixels outlying
the imagette center region, the FGS is robust to about 80 %. GCRs of the
examined intensity affect the FGS less than dead pixels on the boundary, but
tend to affect it more if they miss the imagette center region. For de-focus blur,
the accuracy of the FGS decreases with larger focal distances. Against the BFE
and dark current, the FGS is completely robust in the studied expressions, even
concerning precision. The level of detail shows the sensitivity of our evaluation
approach.
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5. Conclusion

In this Bachelor’s thesis, we developed an automated fault injection approach
for satellite on-board image processing and applied it to the case study of the
Fine Guidance System (FGS) of the PLATO mission. Due to the enormous
input range of the FGS, we used an equivalence class test to determine the ro-
bustness of the FGS. Based on a literature review, we selected the fault classes
and made a domain-specific selection in consultation with experts from the
DLR. We considered a wide range of faults, from electronics noise to optical
de-focus blur to cosmic rays. Then, we modeled these fault classes and inte-
grated them into our custom-developed injection framework. In addition, we
thoroughly evaluated the equivalence classes and test suites with various cov-
erage. Thereby we were able to identify which faults in the input data the FGS
are robust against in various settings. Furthermore, we were able to identify
cases where the FGS should be improved. The general tendency is that the
FGS is robust against faults with changes in the width or shape of the stars,
including de-focus blur and brighter-fatter noise. In contrast, the FGS is not
robust against punctual faults, such as hot and dead pixels.

Automated testing for faults is a significant factor in achieving application
requirements in aerospace. Most importantly, it is central to systematically test
for application-specific faults so that they can be purposefully compensated.

Our solution meets our criteria:

1. Our fault classes selected in consultation with experts at the DLR, are
domain-specific, realistic and relevant.

2. The fault injection and execution of the FGS with any test set is auto-
mated to a single procedure.

3. Robustness is assessable for the individual equivalence classes via the
plots for accuracy and precision.

With our automated fault injection, we can determine whether the FGS is
robust and how well it performs in the presence of faults. For a given test
suite, the accuracy as well as the precision can be considered. We examined
the overall accuracy of the FGS and the percentage of outliers with the median
absolute deviation (MAD) criterion. The idea for the evaluation was a devia-
tion distribution, like a histogram, where the occurred residuals are displayed.
With the outlier criterion, we have obtained a flexible data representation by
calculating the percentage of outliers. Instead of a histogram, we have used the
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5. Conclusion

inliers to display boxplots, which has provided a compact representation of the
overall data distribution and has also allowed to distinguish between different
test suite coverages and fault class parameters.

We also used our fault injection approach to evaluate the equivalence-based
testing approach presented in [WGH20b]. Between the test suites of different
coverages, we demonstrated no definite superiority of the complete test suite.
Rather, we have found that in individual samples, it is possible that by chance
a test suite with lower coverage contains more critical cases than one with
higher coverage. However, we have shown that the test suites usually have
similar fractions of outliers, which means that in absolute terms the full test
suite usually contains the most critical cases.

To get even more accurate results, the results of the test suites would have to
be averaged much more. Repeatedly running test suite coverages would result
in less scatter in the results. For a reliable error detection capability value,
further sampling would also be necessary. It would also be desirable to test
sets with complete and multiple covered equivalence class combinations to see
if the outliers increase even more. Afterwards, it would also be possible to
adjust the equivalence classes in feedback. More fault classes could be added
to and examined in our system of automated injection and evaluation. On the
other hand, the knowledge gained could be used to improve the FGS algorithm.
In given space environments it may be relevant that the algorithm is robust
under the influence of fault classes, under which it is not yet.
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(a) Boxplots for the centroids position standard
deviation dependent on the scaled readout
noise variance factor M(σRN). The four col-
ors represent different test suite coverages.
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Figure A.1.: Boxplots and outlier fractions for the readout noise fault, measured
by the standard deviation.
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Figure A.2.: Class-wise performance of different test suite coverages measured by
the centroids position standard deviation, for the readout noise
variance factor M(σRN) = 16.
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Figure A.3.: Class-wise performance of various scaled readout noise variance
factors M(σRN) for a test suite coverage of 100 %.
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(a) Boxplots for the centroids position standard devia-
tion dependent on the hot pixel sector S. The four
colors represent different test suite coverages. Here,
∆d is plotted on a logarithmic scale.
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Figure A.4.: Boxplots and outlier fractions for the hot pixel, measured by the
standard deviation.
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Figure A.5.: Class-wise performance of different test suite coverages measured by
the centroids position standard deviation, for all hot pixel sectors
S.
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A. Additional Plots
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Figure A.6.: Class-wise performance of various hot pixel sectors S for a test
suite coverage of 100 %.
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(a) Boxplots for the centroids position standard de-
viation dependent on the dead pixel sector
S. The four colors represent different test suite
coverages. Here, ∆d is again plotted on a loga-
rithmic scale.
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Figure A.7.: Boxplots and outlier fractions for the dead pixel, measured by the
standard deviation.
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Figure A.8.: Class-wise performance of different test suite coverages measured by
the centroids position standard deviation, for all dead pixel sectors
S.
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Figure A.9.: Class-wise performance of various dead pixel sectors S for a test
suite coverage of 100 %.
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A. Additional Plots
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(a) Boxplots for the centroids position standard deviation dependent on
the focal distance ∆f (for blue light). The four colors represent
different test suite coverages.
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different coverages and the focal distance ∆f (for blue light).

Figure A.10.: Boxplots and outlier fractions for de-focus blur with blue light, mea-
sured by the standard deviation.
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Figure A.11.: Class-wise performance of different test suite coverages measured by
the centroids position standard deviation, for the focal distance
∆f = −100 µm (for blue light).
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Figure A.12.: Class-wise performance of various focal distances ∆f for a test
suite coverage of 100 % (for blue light).
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A. Additional Plots
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(a) Boxplots for the centroids position standard deviation dependent on
the focal distance ∆f (for red light). The four colors represent dif-
ferent test suite coverages.
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(b) Outlier fractions of standard deviation broken down by test suites of
different coverages and the focal distance ∆f (for red light).

Figure A.13.: Boxplots and outlier fractions for de-focus blur with red light, mea-
sured by the standard deviation.
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Figure A.14.: Class-wise performance of different test suite coverages measured by
the centroids position standard deviation, for the focal distance
∆f = −100 µm (for red light).
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Figure A.15.: Class-wise performance of various focal distances ∆f for a test
suite coverage of 100 % (for red light).
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A. Additional Plots
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(a) Boxplots for the centroids position
standard deviation dependent on the
active/inactive Brighter-Fatter Ef-
fect. The four colors represent different
test suite coverages.
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Figure A.16.: Boxplots and outlier fractions for the BFE, measured by the stan-
dard deviation.
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Figure A.17.: Class-wise performance of different test suite coverages measured by
the centroids position standard deviation, for the active Brighter-
Fatter Effect.
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Figure A.18.: Class-wise performance of active/inactive Brighter-Fatter Effect
for a test suite coverage of 100 %.
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(a) Boxplots for the centroids position standard
deviation dependent on the scaled dark cur-
rent factor M(σDC). The four colors repre-
sent different test suite coverages.
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Figure A.19.: Boxplots and outlier fractions for the dark signal fault, measured by
the standard deviation.
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A. Additional Plots
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Figure A.20.: Class-wise performance of different test suite coverages measured
by the centroids position standard deviation, for the dark current
factor M(σDC) = 256.
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Figure A.21.: Class-wise performance of various scaled dark current factor
M(σDC) for a test suite coverage of 100 %.
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(a) Boxplots for the centroids position
standard deviation dependent on
galactic cosmic rays (not) hitting
the imagette center region. The four
colors represent different test suite
coverages.
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Figure A.22.: Boxplots and outlier fractions for the GCR, measured by the stan-
dard deviation.
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Figure A.23.: Class-wise performance of different test suite coverages measured by
the centroids position standard deviation, for the galactic cosmic
ray hitting the imagette center region.
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A. Additional Plots
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Figure A.24.: Class-wise performance of galactic cosmic rays (not) hitting the
imagette center region, for a test suite coverage of 100 %.
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